Abstract:
Embodiments of the present disclosure describe electrode configurations to increase electro-thermal isolation of phase-change memory elements and associated techniques. In an embodiment, an apparatus includes a plurality of phase-change memory (PCM) elements, wherein individual PCM elements of the plurality of PCM elements include a phase-change material layer, a first electrode layer disposed on the phase-change material layer and in direct contact with the phase-change material layer, and a second electrode layer disposed on the first electrode layer and in direct contact with the first electrode layer. Other embodiments may be described and/or claimed.
Abstract:
Examples may include techniques to implement a SET write operation to a selected memory cell include in a memory array. Examples include selecting the memory cell that includes phase change material and applying various currents over various periods of time during a nucleation stage and a crystal growth stage to cause the memory cell to be in a SET logical state.
Abstract:
One embodiment provides a memory controller. The memory controller includes a memory controller circuitry and a set pulse determination circuitry. The memory controller circuitry is to identify an address of a target memory cell to be set. The set pulse determination circuitry is to select a positive polarity set pulse if the target memory cell is included in a positive polarity deck or to select a negative polarity set pulse if the target memory cell is included in a negative polarity deck. Each set pulse includes a respective nucleation portion and a respective growth portion. Each portion has a respective current amplitude and a respective time duration.
Abstract:
Technology for a memory device is described. The memory device can include an array of memory cells and a memory controller. The memory controller can receive a request to program a memory cell within the array of memory cells. The memory controller can select a current magnitude and a duration of the current magnitude for a programming set pulse based on a polarity of access for the memory cell, a number of prior write cycles for the memory cell, and electrical distances between the memory cell and wordline/bitline decoders within the array of memory cells. The memory controller can initiate, in response to the request, the programming set pulse to program the memory cell within the array of memory cells. The selected current magnitude and the selected duration of the current magnitude can be applied during the programming set pulse.
Abstract:
Phase change material can be set with a multistage set process. Set control logic can heat a phase change semiconductor material (PM) to a first temperature for a first period of time. The first temperature is configured to promote nucleation of a crystalline state of the PM. The control logic can increase the temperature to a second temperature for a second period of time. The second temperature is configured to promote crystal growth within the PM. The nucleation and growth of the crystal set the PM to the crystalline state. The multistage ramping up of the temperature can improve the efficiency of the set process relative to traditional approaches.
Abstract:
One embodiment provides a memory controller. The memory controller includes a memory controller circuitry and a set pulse determination circuitry. The memory controller circuitry is to identify an address of a target memory cell to be set. The set pulse determination circuitry is to select a positive polarity set pulse if the target memory cell is included in a positive polarity deck or to select a negative polarity set pulse if the target memory cell is included in a negative polarity deck. Each set pulse includes a respective nucleation portion and a respective growth portion. Each portion has a respective current amplitude and a respective time duration.
Abstract:
Embodiments including systems, methods, and apparatuses associated with expanding a threshold voltage window of memory cells are described herein. Specifically, in some embodiments memory cells may be configured to store data by being set to a set state or a reset state. In some embodiments, a dummy-read process may be performed on memory cells in the set state prior to a read process. In some embodiments, a modified reset algorithm may be performed on memory cells in the reset state. Other embodiments may be described or claimed.
Abstract:
Examples may include techniques to implement a SET write operation to a selected memory cell include in a memory array. Examples include selecting the memory cell that includes phase change material and applying various currents over various periods of time during a nucleation stage and a crystal growth stage to cause the memory cell to be in a SET logical state.
Abstract:
Techniques for accessing multi-level cell (MLC) crosspoint memory cells are described. In one example, a circuit includes a crosspoint memory cell that can be in one of multiple resistive states (e.g., four or more resistive states). In one example, to perform a read, circuitry coupled with the memory cell applies one or more sub-reads at different read voltages. For example, the circuitry applies a first read voltage and detects if the memory cell thresholds in response to the first read voltage. If the memory cell thresholded in response to the first read voltage, the state of the memory cell can be determined without further reads. If the memory cell did not threshold in response to the first read voltage, a second read voltage with a greater magnitude is applied across the memory cell. If the memory cell thresholded in response to the second read voltage, the state of the memory cell can be determined without further reads. If the memory cell did not threshold in response to the first read voltage, a third read voltage with a greater magnitude is applied across the memory cell. In one example, the thresholding of the memory cell triggers the application of a write current to write back the state of the bit due to read disturb from the read.
Abstract:
Phase change material can be set with a multistage set process. Set control logic can heat a phase change semiconductor material (PM) to a first temperature for a first period of time. The first temperature is configured to promote nucleation of a crystalline state of the PM. The control logic can increase the temperature to a second temperature for a second period of time. The second temperature is configured to promote crystal growth within the PM. The nucleation and growth of the crystal set the PM to the crystalline state. The multistage ramping up of the temperature can improve the efficiency of the set process relative to traditional approaches.