Abstract:
An energy storage device comprises a first porous semiconducting structure (510) comprising a first plurality of channels (511) that contain a first electrolyte (514) and a second porous semiconducting structure (520) comprising a second plurality of channels (521) that contain a second electrolyte (524). In one embodiment, the energy storage device further comprises a film (535) on at least one of the first and second porous semiconducting structures, the film comprising a material capable of exhibiting reversible electron transfer reactions. In another embodiment, at least one of the first and second electrolytes contains a plurality of metal ions. In another embodiment, the first and second electrolytes, taken together, comprise a redox system.
Abstract:
Methods and apparatus utilizing indium-based precursors in semiconductor manufacturing are disclosed. An example apparatus includes a substrate layer, the substrate layer to be included an integrated circuit package, and a photoresist on the substrate layer, the photoresist including indium.
Abstract:
In one embodiment, a negative capacitance transistor device includes a perovskite semiconductor material layer with first and second perovskite conductors on opposite ends of the perovskite semiconductor material layer. The device further includes a dielectric material layer on the perovskite semiconductor material layer between the first and second perovskite conductors, a perovskite ferroelectric material layer on the dielectric material layer, and a third perovskite conductor on the perovskite ferroelectric material layer.
Abstract:
Perovskite oxide field effect transistors comprise perovskite oxide materials for the channel, source, drain, and gate oxide regions. The source and drain regions are doped with a higher concentration of n-type or p-type dopants (depending on whether the transistor is an n-type or p-type transistor) than the dopant concentration in the channel region to minimize Schottky barrier height between the source and drain regions and the source and drain metal contact and contact resistance.
Abstract:
Precursors and methods related to a bismuth oxy-carbide-based photoresist are disclosed herein. In some embodiments, a method for forming a bismuth oxy-carbide-based photoresist may include exposing a bismuth-containing precursor and a co-reagent to a substrate to form a bismuth oxy-carbide-based photoresist having a formula BixOyCz on the substrate, where x is 1 or 2, y is between 2 and 4, and z is between 1 and 5, the bismuth-containing precursor having a formula R′Bi(NR2)2 or R′2BiNR2 where R includes methyl, ethyl, isopropyl, tert-butyl, or trimethylsilyl, or NR2 is piperidine, and R′ includes methyl, ethyl, isopropyl, tert-butyl, cyclo-pentyl, cyclo-hexyl, methyl trimethylsilyl, methyl 2-butyl, benzyl, 1-methyl 2-dimethyl propyl, or cyclopentadienyl. In some embodiments, the co-reagent includes water, hydrogen peroxide, oxygen, ozone, formic acid, maleic acid, or an alcohol.
Abstract:
In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
Abstract:
Described herein are capacitor devices formed using perovskite insulators. In one example, a perovskite templating material is formed over an electrode, and a perovskite insulator layer is grown over the templating material. The templating material improves the crystal structure and electrical properties in the perovskite insulator layer. One or both electrodes may be ruthenium. In another example, a perovskite insulator layer is formed between two layers of indium tin oxide (ITO), with the ITO layers forming the capacitor electrodes.
Abstract:
A memory structure includes conductive lines extending horizontally in a spaced apart fashion within a vertical stack above a base or substrate. The vertical stack includes a plurality of conductive lines, the first and second conductive lines being part of the plurality. A gate structure extends vertically through the first and second conductive lines. The gate structure includes a body of semiconductor material and a dielectric, where the dielectric is between the body and the conductive lines. An isolation material is on at least one side of the vertical stack and in contact with the conductive lines. The vertical stack defines a void located vertically between at the first and second conductive lines in the vertical stack and laterally between the gate structure and the isolation material. The void may extend along a substantial length (e.g., 20 nm or more) of the first and second conductive lines.
Abstract:
Embodiments herein describe techniques for a semiconductor device including a three dimensional capacitor. The three dimensional capacitor includes a pole, and one or more capacitor units stacked around the pole. A capacitor unit of the one or more capacitor units includes a first electrode surrounding and coupled to the pole, a dielectric layer surrounding the first electrode, and a second electrode surrounding the dielectric layer. Other embodiments may be described and/or claimed.
Abstract:
Disclosed herein are rare-earth materials, structures, and methods for integrated circuit (IC) structures. For example, in some embodiments, a precursor for atomic layer deposition (ALD) of a rare-earth material in an IC structure may include a rare-earth element and a pincer ligand bonded to the rare-earth element.