Abstract:
A method including forming a plurality of dicing channels in a front side of a wafer; the plurality of dicing channels including a depth at least greater than a desired final thickness of the wafer, filling the plurality of dicing channels with a fill material and removing a portion of the wafer from a back side of the wafer until the desired final thickness is achieved, where a portion of the fill material within the plurality of dicing channel is exposed. The method further including depositing a metal layer on the back side of the wafer; removing the fill material from within the plurality of dicing channels to expose the metal layer at a bottom of the plurality of dicing channels, and removing a portion of the metal layer located at the bottom of the plurality of dicing channels.
Abstract:
Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
Abstract:
The present disclosure generally provides for integrated circuit (IC) structures with through-semiconductor vias (TSV). In an embodiment, an IC structure may include a through-semiconductor via (TSV) embedded in a substrate, the TSV having a cap; a dielectric layer adjacent to the substrate; a metal layer adjacent to the dielectric layer; a plurality of vias each embedded within the dielectric layer and coupling the metal layer to the cap of the TSV at respective contact points, wherein the plurality of vias is configured to create a substantially uniform current density throughout the TSV.
Abstract:
Chip connection structures and related methods of forming such structures are disclosed. In one case, an interconnect structure is disclosed, the structure including: a pillar connecting an integrated circuit chip and a substrate, the pillar including a barrier layer, a first copper layer over the barrier layer, and a first solder layer over the first copper layer.
Abstract:
Semiconductor devices with enhanced electromigration performance and methods of manufacture are disclosed. The method includes forming at least one metal line in electrical contact with a device. The method further includes forming at least one staple structure in electrical contact with the at least one metal line. The at least one staple structure is formed such that electrical current passing through the at least one metal line also passes through the at least staple structure to reduce electromigration issues.
Abstract:
Structures and methods for forming good electrical connections between an integrated circuit (IC) chip and a chip carrier of a flip chip package include forming one of: a tensile layer on a front side of the IC chip, which faces a tops surface of the chip carrier, and a compressive layer on the backside of the IC chip. Addition of one of: a tensile layer to the front side of the IC chip and a compressive layer the backside of the IC chip, may reduce or modulate warpage of the IC chip and enhance wetting of opposing solder surfaces of solder bumps on the IC chip and solder formed on flip chip (FC) attaches of a chip carrier during making of the flip chip package.
Abstract:
A probe tip structure that decreases the accumulation rate of Sn particles to the probe tip and enables considerably more efficient and complete laser cleaning is disclosed. In an embodiment, the probe structure includes an array of probe tips, each probe tip having an inner core; an interfacial layer bonded to the inner core; and an outer layer bonded to the interfacial layer, wherein the outer layer is resistant to adherence of the solder of the ball grid array package.
Abstract:
A handle wafer which prevents edge cracking during a thinning process and method of using the handle wafer for grinding processes are disclosed. The handle wafer includes a body portion with a bottom surface. A square edge portion is provided about a circumference of the bottom surface.
Abstract:
A method of applying inductive heating to join an integrated circuit chip to an electrical substrate using solder bumps including applying a magnetic field to a magnetic liner in thermal contact with a solder bump on the integrated circuit chip, the magnetic field causes Joule heating in the magnetic liner sufficient to melt the solder bump, the solder bump comprising a lower portion embedded in a first dielectric layer and an upper portion at least partially embedded in a second dielectric layer, the lower
Abstract:
Aspects of the present invention relate to a controlled metal extrusion opening in a semiconductor structure. Various embodiments include a semiconductor structure. The structure includes an aluminum layer. The aluminum layer includes an aluminum island within the aluminum layer, and a lateral extrusion receiving opening extending through the aluminum layer adjacent the aluminum island. The opening includes a lateral extrusion of the aluminum layer of the semiconductor structure. Additional embodiments include a method of forming a semiconductor structure. The method can include forming an aluminum layer over a titanium layer. The aluminum layer includes an aluminum island within the aluminum layer. The method can also include forming an opening extending through the aluminum layer adjacent the aluminum island within the aluminum layer. The opening includes a lateral extrusion of the aluminum layer of the semiconductor layer.