Abstract:
An optoelectronic semiconductor device includes a carrier having a carrier top side, at least one optoelectronic semiconductor chip arranged at the carrier top side and having a radiation main side remote from the carrier top side, at least one bonding wire, at least one covering body on the radiation main side, and at least one reflective potting compound surrounding the semiconductor chip in a lateral direction and extending from the carrier top side at least as far as the radiation main side, wherein the bonding wire is completely covered by the reflective potting compound or completely covered by the reflective potting compound and the covering body, the bonding wire is fixed to the semiconductor chip in an electrical connection region on the radiation main side, and the electrical connection region is free of the covering body and covered partly or completely by the reflective potting compound.
Abstract:
A method of producing a semiconductor component includes providing an optoelectronic semiconductor chip; applying a molding compound for an optical element, wherein the molding compound is based on a highly refractive polymer material; precuring the molding compound at a temperature of at most 50° C.; and curing the molding compound.
Abstract:
A method for producing a plurality of optoelectronic semiconductor devices is provided. A number of semiconductor chips are fastened on an auxiliary support. The semiconductor chips are spaced apart from one another in a lateral direction. A reflective layer is formed, at least in regions between the semiconductor chips. A composite package body is formed at least in certain regions between the semiconductor chips. The auxiliary support is removed and the composite housing body is separated into a number of optoelectronic semiconductor devices. Each optoelectronic semiconductor device has at least one semiconductor chip, part of the reflective layer and part of the composite package body as a package body.
Abstract:
A method of producing a semiconductor component includes providing an optoelectronic semiconductor chip; applying a molding compound for an optical element, wherein the molding compound is based on a highly refractive polymer material; precuring the molding compound at a temperature of at most 50° C.; and curing the molding compound.
Abstract:
An electrical component includes a closed lead frame with a passage opening at least one electrical component arranged within the passage opening, the electrical component including a first contact pad on one side of the electrical component and a second contact pad on a second side of the electric component, wherein the second side faces the first side and the second contact pad is electrically coupled to the lead frame; and an encapsulation which mechanically couples the electrical component to the lead frame, wherein the lead frame includes a recess on one side, the recess extending from an edge of the lead frame to the passage opening and connecting at least one electrical connecting element from the edge of the lead frame to the component arranged in the passage opening.
Abstract:
In an embodiment an optoelectronic component includes a radiation emitting semiconductor chip configured to emit primary electromagnetic radiation from a radiation emission surface, a conversion element configured to convert the primary electromagnetic radiation into electromagnetic secondary radiation, a first potting covering at least one side surface of the semiconductor chip, a second potting arranged on the first potting and an adhesion promoter with which the conversion element is fixed on the radiation emission surface of the semiconductor chip, wherein the adhesion promoter is arranged on a top surface of the first potting, wherein the first potting includes first filler particles, wherein the second potting includes second filler particles, and wherein a mass fraction of the first filler particles is greater than a mass fraction of the second filler particles per volume element.
Abstract:
In an embodiment a method for manufacturing at least one electronic component includes providing a second surface area of the component adjacent to a first surface area, wherein the second surface area is repulsive to a first fluid to be applied, applying the first fluid without additional pressurization to the first and/or second surface area, wherein the first surface area is wetted by the first fluid and the first fluid is repelled from the second surface area and applying a second fluid to the first surface area, to the second surface area and/or to a surface area of the solidified first fluid, after solidification of the first fluid applied to the first surface area, wherein applying the second fluid includes applying a positive pressure, a plasma action and/or a compression molding, and wherein the second fluid wets the second surface area.
Abstract:
A method for producing optoelectronic semiconductor components is disclosed. In an embodiment a method includes A) applying radiation-emitting semiconductor chips to an intermediate carrier, wherein the semiconductor chips are volume emitters configured to emit radiation at light exit main sides and on chip side surfaces; B) applying a clear potting permeable to the radiation directly onto the chip side surfaces so that the chip side surfaces are predominantly or completely covered by the clear potting and a thickness of the clear potting in each case decreases monotonically in a direction away from the main light exit sides; C) producing a reflection element so that the reflection element and the clear potting touch on an outer side of the clear potting opposite the chip side surfaces; and D) detaching the semiconductor chips from the intermediate carrier and attaching the semiconductor chips to a component carrier so that the light exit main sides of the semiconductor chips face away from the component carrier.
Abstract:
A method and device for slurrying a suspension, the device including a mixing container with an inlet opening configured to introduce the suspension into the mixing container, a distributor element having a collecting container and an outlet arm fastened to the collecting container, and a shaft with a longitudinal axis, with the shaft and the distributor element arranged inside the mixing container, and the distributor element rotatable around the shaft. The collecting container has a collecting opening that permits passage of the suspension from the inlet opening into the distributor element, the outlet arm has an outflow opening that lets the suspension leave the distributor element, and the outlet arm permitting the suspension to flow out of the distributor element, with a flow of the suspension causing a torque on the distributor element so that the torque supports a rotation around the shaft.
Abstract:
An arrangement includes a carrier; an optoelectronic component arranged on the carrier; and a material arranged on the carrier, wherein the carrier includes at least one structural element that hinders flow of the material in a flow direction, the structural element extends transversely to the flow direction, and the structural element has a rounding radius in a plane perpendicular to the transverse extent of the structural element less than 20 μm.