Abstract:
In at least one embodiment, the optoelectronic semiconductor chip comprises a semiconductor layer sequence with a radiation side, a first semiconductor layer of a first conductivity type, an active layer, a second semiconductor layer of a second conductivity type, and a rear side, which are arranged one above the other in this order. The active layer generates or absorbs primary electromagnetic radiation in the intended operation. Further, the optoelectronic semiconductor chip comprises a first contact structure and a second contact structure for electrically contacting the semiconductor layer sequence. The second contact structure is arranged on the rear side and is in electrical contact with the second semiconductor layer. The radiation side is configured for coupling in or coupling out primary radiation into or out of the semiconductor layer sequence. The rear side is structured and includes scattering structures configured to scatter and redirect the primary radiation.
Abstract:
A method of producing an optoelectronic component includes providing a carrier having a carrier surface, a first lateral section of the carrier surface being raised relative to a second lateral section of the carrier surface; arranging an optoelectronic semiconductor chip having a first surface and a second surface on the carrier surface, wherein the first surface faces toward the carrier surface; and forming a molded body having an upper side facing toward the carrier surface and a lower side opposite the upper side, the semiconductor chip being at least partially embedded in the molded body.
Abstract:
A method for producing a plurality of semiconductor components (1) is provided, comprising the following steps: a) providing a semiconductor layer sequence (2) having a first semiconductor layer (21), a second semiconductor layer (22) and an active region (25), said active region being arranged between the first semiconductor layer and the second semiconductor layer for generating and/or receiving radiation; b) forming a first connection layer (31) on the side of the second connection layer facing away from the first semiconductor layer; c) forming a plurality of cut-outs (29) through the semiconductor layer sequence; d) forming a conducting layer (4) in the cut-outs for establishing an electrically conductive connection between the first semiconductor layer and the first connection layer; and e) separating into the plurality of semiconductor components, wherein a semiconductor body (20) having at least one of the plurality of cut-outs arises from the semiconductor layer sequence for each semiconductor component and the at least one cut-out is completely surrounded by the semiconductor body in a top view of the semiconductor body. Furthermore, a semiconductor component is provided.
Abstract:
A method for producing a plurality of semiconductor components and a semiconductor component is disclosed. In some embodiment, the method includes forming a semiconductor layer sequence, structuring the semiconductor layer sequence by forming trenches thereby structuring semiconductor bodies, applying an auxiliary substrate on the semiconductor layer sequence, so that the semiconductor layer sequence is arranged between the auxiliary substrate and the substrate and removing the substrate from the semiconductor layer sequence. The method further comprises applying an anchoring layer covering the trench and vertical surfaces of the semiconductor bodies, forming a plurality of tethers by structuring the anchoring layer in regions covering the trench, locally detaching the auxiliary substrate from the semiconductor bodies, wherein the tethers remain attached to the auxiliary substrate and selectively picking up a semiconductor body by separating the tethers from the auxiliary substrate, the semiconductor body including a portion of the layer sequence.
Abstract:
A method can be used for for producing an optoelectronic component. An optoelectronic semiconductor chip has a front face and a rear face. A sacrificial layer is applied to the rear face. A molded body is formed the optoelectronic semiconductor chip being at least partially embedded in the molded body. The sacrificial layer is removed.
Abstract:
In an embodiment a radiation emitting semiconductor chip includes a semiconductor layer sequence with a plurality of active regions and a main extension plane, wherein each active region has a main extension direction, wherein each active region is configured to emit electromagnetic radiation from an emitter region extending parallel to the main extension plane, wherein at least two active regions overlap in plan view, wherein the emitter regions are arranged at grid points of a regular grid connected by at least one grid line, and wherein the main extension direction of at least one active region encloses an angle of at least 10° and at most 80° with the grid lines of the regular grid.
Abstract:
In at least one embodiment, the optoelectronic semiconductor chip (100) comprises a semiconducting recombination layer (1) for generating electromagnetic radiation by charge carrier recombination, a plurality of first contact elements (31) on a first side (11) of the recombination layer, at least one second contact element (32) on the first side of the recombination layer, a plurality of semiconducting first connection regions (21), and at least one semiconducting second connection region (22). Each of the first connection regions is arranged between a first contact element and the first side of the recombination layer. The second connection region is arranged between the second contact element and the first side of the recombination layer. The first connection regions comprise a first type of doping and the second connection region comprises a second type of doping complementary to the first type of doping. The first contact elements are individually and independently electrically contactable.
Abstract:
An optoelectronic device is disclosed. In an embodiment an optoelectronic device includes a primary radiation source configured to emit an electromagnetic primary radiation during operation of the device and a conversion element arranged in a beam path of the electromagnetic primary radiation, wherein the conversion element includes quantum dots configured to at least partially convert the electromagnetic primary radiation into an electromagnetic secondary radiation during operation of the device, and wherein the quantum dots have a diameter of 50 nm inclusive to 500 nm inclusive.
Abstract:
A method for producing a plurality of semiconductor components and a semiconductor component are disclosed. In an embodiment the component includes a light transmissive carrier, a semiconductor body disposed on the light transmissive carrier, the semiconductor body including a first semiconductor layer, a second semiconductor layer and an active region being arranged between the first semiconductor layer and the second semiconductor layer, wherein the semiconductor body includes a first patterned main surface facing the light transmissive carrier and a second main surface facing away from the carrier and a contact structure including a first contact area and a second contact area arranged on the second main surface, wherein the second contact area is electrically connected to the second semiconductor layer, and wherein the contact structure comprises a via extending from the second main surface throughout the second semiconductor layer and the active region into the first semiconductor layer.
Abstract:
A method for producing a plurality of semiconductor components and a semiconductor component are disclosed. In an embodiment the method includes applying a semiconductor layer sequence on a substrate, structuring the semiconductor layer sequence by forming trenches thereby separating the semiconductor layer sequence into a plurality of semiconductor bodies and applying an insulating layer covering the trenches and vertical surfaces of the plurality of semiconductor bodies. The method further includes forming a plurality of tethers by structuring the insulating layer in regions covering the trenches, locally detaching the substrate from the plurality of semiconductor bodies, wherein the tethers remain attached to the substrate and selectively picking up each semiconductor body by separating the tethers from the substrate, wherein each semiconductor body comprises a portion of the semiconductor layer sequence.