-
公开(公告)号:US20200161448A1
公开(公告)日:2020-05-21
申请号:US16748327
申请日:2020-01-21
Applicant: STC.UNM
Inventor: Steven R.J. Brueck , Stephen D. Hersee , Seung-Chang Lee , Daniel Feezell
IPC: H01L29/66 , H01L21/02 , H01L29/78 , B82Y40/00 , H01L29/04 , H01L29/06 , H01L29/775 , H01L29/20 , H01L29/778 , B82Y10/00 , H01L29/16
Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
-
12.
公开(公告)号:US20170194476A1
公开(公告)日:2017-07-06
申请号:US15466461
申请日:2017-03-22
Applicant: STC.UNM
Inventor: Steven R.J. Brueck , Seung-Chang Lee , Christian Wetzel , Mark Durniak
IPC: H01L29/778 , H01L21/02 , H01L29/08 , H01L29/66 , H01L29/205 , H01L29/04 , H01L21/306
CPC classification number: H01L29/7787 , H01L21/02381 , H01L21/02395 , H01L21/0243 , H01L21/02433 , H01L21/02458 , H01L21/02494 , H01L21/02502 , H01L21/0251 , H01L21/0254 , H01L21/02587 , H01L21/02609 , H01L29/04 , H01L29/045 , H01L29/0657 , H01L29/0847 , H01L29/205 , H01L29/402 , H01L29/42316 , H01L29/66462 , H01L29/78 , H01L33/007 , H01L33/0079 , H01L33/24 , H01L33/32 , H01S5/021 , H01S5/22 , H01S5/227 , H01S5/3203 , H01S5/34333
Abstract: A transistor comprises a substrate comprising a Group III/V compound semiconductor material having a cubic crystalline phase structure positioned on a hexagonal crystalline phase layer having a first region and a second region, the cubic crystalline phase structure being positioned between the first region and the second region of the hexagonal crystalline phase layer. A source region and a drain region are both positioned in the Group III/V compound semiconductor material. A channel region is in the Group III/V compound semiconductor material. A gate is over the channel region. An optional backside contact can also be formed. A source contact and electrode are positioned to provide electrical contact to the source region. A drain contact and electrode are positioned to provide electrical contact to the drain region. Methods of forming transistors are also disclosed.
-
13.
公开(公告)号:US20170092485A1
公开(公告)日:2017-03-30
申请号:US15374547
申请日:2016-12-09
Applicant: STC.UNM
Inventor: Steven R.J. Brueck , Seung-Chang Lee , Christian Wetzel , Mark Durniak
Abstract: A method of forming a semiconductor structure includes providing a substrate comprising a first material portion and a single crystal silicon layer on the first material portion. The substrate further comprises a major front surface, a major backside surface opposing the major front surface, and a plurality of grooves positioned in the major front surface. A buffer layer is deposited in one or more of the plurality of grooves. A semiconductor material is epitaxially grown over the buffer layer and in the one or more plurality of grooves, the epitaxially grown semiconductor material comprising a hexagonal crystalline phase layer and a cubic crystalline phase structure disposed over the hexagonal crystalline phase.
-
公开(公告)号:US20160377590A1
公开(公告)日:2016-12-29
申请号:US15039825
申请日:2014-11-26
Applicant: STC.UNM
Inventor: Steven R.J. Brueck , Jeremy Scott Edwards , Alexander Neumann , Yuliya Kuznetsova , Edgar A. Mendoza
IPC: G01N33/487 , B01L3/00 , C23C16/50 , C23C16/34 , C23C16/455 , C12Q1/68 , G01N21/65
CPC classification number: G01N33/48721 , B01L3/502707 , B01L3/502761 , B01L2200/0663 , B01L2200/0689 , B01L2200/12 , B01L2300/046 , B01L2300/0654 , B01L2300/0816 , B01L2300/087 , B01L2300/0896 , B01L2300/16 , B01L2300/168 , B01L2400/0421 , C12Q1/6869 , C23C16/345 , C23C16/45525 , C23C16/50 , G01N21/65 , G01N2021/653 , G01N2201/061 , C12Q2563/155 , C12Q2565/631
Abstract: Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.
Abstract translation: 长时间读取,无标记,光学纳米孔长链分子测序的方法和设备。 通常,本公开描述了基于纳米通道的整合以提供具有广泛间隔(>波长),〜1nm孔径“曲折”纳米孔的单个长链分子的新型测序技术,其缓慢移位足以提供大量平行的, 使用光学技术的单基准分辨率。 使用简单的胶体纳米颗粒的新颖的定向自组装纳米加工方案用于在展开长链分子的纳米通道上形成纳米孔阵列。 在纳米颗粒阵列的表面,工程等离子体/极化结构中的强定域电磁场允许使用光学技术的单碱基分辨率。
-
公开(公告)号:US20200058500A1
公开(公告)日:2020-02-20
申请号:US16662236
申请日:2019-10-24
Applicant: STC.UNM
Inventor: Seung-Chang Lee , Steven R.J. Brueck
IPC: H01L21/02 , B81C1/00 , B82Y10/00 , H01L21/311 , H01L21/306 , H01L21/285 , H01L29/06 , H01L29/786 , H01L27/092 , H01L29/66 , H01L29/423 , H01L21/8238
Abstract: Provided is a method for growing a nanowire, including: providing a substrate with a base portion having a first surface and at least one support structure extending above or below the first surface; forming a dielectric coating on the at least one support structure; forming a photoresist coating over the substrate; forming a metal coating over at least a portion of the dielectric coating; removing a portion of the dielectric coating to expose a surface of the at least one support structure; removing a portion of the at least one support structure to form a nanowire growth surface; growing at least one nanowire on the nanowire growth surface of a corresponding one of the at least one support structure, wherein the nanowire comprises a root end attached to the growth surface and an opposing, free end extending from the root end; and elastically bending the at least one nanowire.
-
公开(公告)号:US20190227050A1
公开(公告)日:2019-07-25
申请号:US16215139
申请日:2018-12-10
Applicant: STC.UNM
Inventor: Steven R.J. Brueck , Jeremy Scott Edwards , Alexander Neumann , Yuliya Kuznetsova , Edgar A. Mendoza
IPC: G01N33/487 , C23C16/50 , C23C16/455 , C23C16/34 , B01L3/00 , C12Q1/6869 , G01N21/65
Abstract: Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.
-
公开(公告)号:US20180366904A1
公开(公告)日:2018-12-20
申请号:US15571800
申请日:2016-05-06
Applicant: STC.UNM
Inventor: Steven R.J. Brueck , Sanjay Krishna , Daniel P. Dapkus
CPC classification number: H01S5/1218 , G01N2021/1704 , G01N2021/394 , G01N2021/399 , H01S3/1303 , H01S5/0085 , H01S5/021 , H01S5/02208 , H01S5/02248 , H01S5/0268 , H01S5/041 , H01S5/042 , H01S5/0421 , H01S5/0425 , H01S5/1212 , H01S5/34306 , H01S5/4087 , H01S5/50
Abstract: A tunable laser device includes a laser structure and a plurality of individually addressable, separated contact stripes disposed on the laser structure. The laser structure includes a substrate, an active portion disposed on the substrate, and a chirped distributed feedback (DFB) grating disposed on the active portion. The active portion includes at least top and bottom contact layers and a gain medium.
-
18.
公开(公告)号:US20140064312A1
公开(公告)日:2014-03-06
申请号:US14032904
申请日:2013-09-20
Applicant: STC.UNM
Inventor: Seung Chang Lee , Steven R.J. Brueck
CPC classification number: H01L21/02603 , B82Y10/00 , B82Y40/00 , B82Y99/00 , H01L21/0237 , H01L21/02439 , H01L21/02507 , H01L21/02521 , H01L21/02639 , H01L29/0665 , H01L29/0673 , H01L29/127 , H01L29/158 , H01L29/7783 , H01L29/7853 , H01L33/06 , H01L33/18 , H01S5/32 , Y10S977/951 , Y10S977/962
Abstract: Exemplary embodiments provide semiconductor nanowires and nanowire devices/applications and methods for their formation. In embodiments, in-plane nanowires can be epitaxially grown on a patterned substrate, which are more favorable than vertical ones for device processing and three-dimensional (3D) integrated circuits. In embodiments, the in-plane nanowire can be formed by selective epitaxy utilizing lateral overgrowth and faceting of an epilayer initially grown in a one-dimensional (1D) nanoscale opening. In embodiments, optical, electrical, and thermal connections can be established and controlled between the nanowire, the substrate, and additional electrical or optical components for better device and system performance.
Abstract translation: 示例性实施例提供用于其形成的半导体纳米线和纳米线器件/应用和方法。 在实施例中,平面内纳米线可以在图案化衬底上外延生长,其比用于器件处理和三维(3D)集成电路的垂直纳米线更有利。 在实施方案中,可以通过使用最初在一维(1D)纳米尺度开口中生长的外延层的横向过生长和刻面的选择性外延来形成平面内纳米线。 在实施例中,可以在纳米线,衬底和附加电气或光学部件之间建立和控制光学,电气和热连接,以获得更好的器件和系统性能。
-
-
-
-
-
-
-