Abstract:
According to example embodiments, an electronic device includes channel layer including a graphene layer electrically contacting a quantum dot layer including a plurality of quantum dots, a first electrode and a second electrode electrically connected to the channel layer, respectively, and a gate electrode configured to control an electric current between the first electrode and the second electrode via the channel layer. A gate insulating layer may be between the gate electrode and the channel layer.
Abstract:
A photodetector includes an insulating layer on a substrate, a first graphene layer on the insulating layer, a 2-dimensional (2D) material layer on the first graphene layer, a second graphene layer on the 2D material layer, a first electrode on the first graphene layer, and a second electrode on the second graphene layer. The 2D material layer includes a barrier layer and a light absorption layer. The barrier layer has a larger bandgap than the light absorption layer.
Abstract:
Provided are an electrode connecting structure that includes an adhesion layer formed between a graphene layer and a metal layer and an electronic device having the electrode connecting structure. The electrode connecting structure may include an adhesion layer formed of a two-dimensional material provided between the graphene layer and the metal layer. The graphene layer may be a diffusion barrier, and the adhesion layer may stably maintain the interface characteristics of the graphene layer and the metal layer when the metal layer is formed on a surface of the graphene layer.
Abstract:
A flexible device includes an electronic device having an electrode and a flexible interconnect layer formed on the electrode. The flexible interconnect layer includes a two-dimensional (2D) material and a conductive polymer to have high electric conductivity and flexibility. The flexible device includes a flexible interconnect layer of one or more layers, and in this case, includes a low-dielectric constant dielectric layer between the respective layers.
Abstract:
Provided are a composition for forming a layered transition metal chalcogenide compound layer and a method of forming a layered transition metal chalcogenide compound layer by using the composition. The composition includes at least one of a transition metal precursor represented by Formula 1 and a chalcogenide precursor represented by Formula 2. Ma(R1)6-b-c(H)b(R2)c [Formula 1] wherein, in Formula 1, M, R1, R2, a, b, and c are the same as defined in the detailed description, and M′kX2 [Formula 2] wherein, in Formula 2, M′ and X are the same as defined in the detailed description.
Abstract:
Semiconductor devices may include a substrate including an active region defined by a device isolation layer, source/drain regions in the active region, word lines extending in a first direction parallel to the active region and being arranged in a second direction crossing the first direction, a bit line pattern extending in the second direction and crossing over a portion of the active region positioned between the word lines, and a graphene pattern covering at least a portion of the bit line pattern.
Abstract:
Provided is a semiconductor device including graphene. The semiconductor device includes: a substrate including an insulator and a semiconductor; and a graphene layer configured to directly grow only on a surface of the semiconductor, wherein the semiconductor includes at least one of a group IV material and a group III-V compound.
Abstract:
Provided are a hardmask composition including a structure represented by Formula 1 and a solvent, a method of forming a pattern using the hardmask composition, and a hardmask formed from the hardmask composition. wherein in Formula 1, R1 to R8, X, and M are described in detail in the detailed description.
Abstract:
A nonvolatile memory apparatus includes a first electrode, a second electrode separated from the first electrode, a resistive-change material layer provided between the first electrode and the second electrode and configured to store information due to a resistance change caused by an electrical signal applied through the first electrode and the second electrode, and a diffusion prevention layer provided between the first electrode and the resistive-change material layer and/or between the second electrode and the resistive-change material layer and including a two-dimensional (2D) material having a monolayer thickness of about 0.35 nm or less.