Abstract:
The semiconductor device includes a source line, a bit line, a signal line, a word line, memory cells connected in parallel between the source line and the bit line, a first driver circuit electrically connected to the source line and the bit line through switching elements, a second driver circuit electrically connected to the source line through a switching element, a third driver circuit electrically connected to the signal line, and a fourth driver circuit electrically connected to the word line. The memory cell includes a first transistor including a first gate electrode, a first source electrode, and a first drain electrode, a second transistor including a second gate electrode, a second source electrode, and a second drain electrode, and a capacitor. The second transistor includes an oxide semiconductor material.
Abstract:
A semiconductor device including a nonvolatile memory cell in which a writing transistor which includes an oxide semiconductor, a reading transistor which includes a semiconductor material different from that of the writing transistor, and a capacitor are included is provided. Data is written to the memory cell by turning on the writing transistor and applying a potential to a node where a source electrode (or a drain electrode) of the writing transistor, one electrode of the capacitor, and a gate electrode of the reading transistor are electrically connected, and then turning off the writing transistor, so that the predetermined amount of charge is held in the node. Further, when a p-channel transistor is used as the reading transistor, a reading potential is a positive potential.
Abstract:
A display device driver circuit in which a lookup table can be written into a memory circuit within a retrace period even when the lookup table is constantly reconstructed in accordance with a change in the external environment and stored in the memory circuit, and data of the lookup table can be held even if supply of power supply voltage stops. In a driver circuit for a display device, a memory circuit including a transistor having a semiconductor layer containing an oxide semiconductor is used as a memory circuit that stores a lookup table for correcting image signals in accordance with a change in the external environment.
Abstract:
[Problem] To provide a semiconductor device suitable for miniaturization. To provide a highly reliable semiconductor device. To provide a semiconductor device with improved operating speed. [Solving Means] A semiconductor device including a memory cell including first to cth (c is a natural number of 2 or more) sub memory cells, wherein: the jth sub memory cell includes a first transistor, a second transistor, and a capacitor; a first semiconductor layer included in the first transistor and a second semiconductor layer included in the second transistor include an oxide semiconductor; one of terminals of the capacitor is electrically connected to a gate electrode included in the second transistor; the gate electrode included in the second transistor is electrically connected to one of a source electrode and a drain electrode which are included in the first transistor; and when j≥2, the jth sub memory cell is arranged over the j−1th sub memory cell.
Abstract:
An electric power charge and discharge system for an electronic device having a battery, by which the electronic device can be used for a long period of time. In a wireless communication device including a wireless driving portion including a first battery and a wireless charging portion including a second battery, the first battery is charged by electric power from a fixed power supply and the second battery is charged by using electromagnetic waves existing in an external space. Further, the first battery and the second battery are discharged alternately, and during a period in which the first battery is discharged, the second battery is charged.
Abstract:
A data reading error is reduced. A memory cell array in a storage device includes a write word line, a read word line, a write bit line, a read bit line, a source line, and a gain cell. For example, a read transistor in the gain cell can include a metal oxide in a channel formation region. A cancel circuit is electrically connected to the read bit line. The cancel circuit has a function of supplying, to the read bit line, current for canceling leakage current supplied to the read bit line from the gain cell in a non-selected state. In read operation, a potential change of the read bit line due to leakage current is compensated for by the current from the cancel circuit, so that a data reading error is reduced.
Abstract:
A semiconductor device including a first oxide including a first region and a second region adjacent to each other and a third region and a fourth region with the first region and the second region sandwiched between the third region and the fourth region, a second oxide over the first region, a first insulator over the second oxide, a first conductor over the first insulator, a second insulator over the second oxide and on side surfaces of the first insulator and the first conductor, a third insulator over the second region and on a side surface of the second insulator, a second conductor over the second region with the third insulator positioned between the second region and the second conductor and on the side surface of the second insulator with the third insulator positioned between the side surface of the second insulator and the second conductor, and a fourth insulator covering the first oxide, the second oxide, the first insulator, the first conductor, the second insulator, the third insulator, and the second conductor and in contact with the third region and the fourth region.
Abstract:
A data reading error is reduced. A memory cell array in a storage device includes a write word line, a read word line, a write bit line, a read bit line, a source line, and a gain cell. For example, a read transistor in the gain cell can include a metal oxide in a channel formation region. A cancel circuit is electrically connected to the read bit line. The cancel circuit has a function of supplying, to the read bit line, current for canceling leakage current supplied to the read bit line from the gain cell in a non-selected state. In read operation, a potential change of the read bit line due to leakage current is compensated for by the current from the cancel circuit, so that a data reading error is reduced.
Abstract:
The semiconductor device includes a bit line, a transistor, a retention node, and a capacitor. The transistor has a function of charging or discharging the retention node. The capacitor has a function of retaining a potential of the retention node. A voltage greater than the sum of a writing voltage and a threshold voltage is applied to a gate of the transistor. When the transistor is turned on, a first potential is supplied to the bit line with a reference potential in a floating state. A voltage less than the sum of the writing voltage and the threshold voltage is applied to the gate of the transistor. When the transistor is turned on, a second potential is supplied to the bit line with a reference potential in a floating state. With use of the first and second potentials, the threshold voltage of the transistor is calculated without being influenced by parasitic capacitance and variations in the storage capacitance of the capacitor.
Abstract:
A semiconductor device or a memory device with a reduced area, a large storage capacity, a high-speed operation, or low power consumption is provided. The semiconductor device includes a first transistor, a second transistor, a capacitor, a first wiring, a second wiring, a sense amplifier circuit, a decoder, a step-up circuit, a level shifter, and a buffer circuit. The first wiring is electrically connected to the buffer circuit and a second gate electrode of the first transistor. The second wiring is electrically connected to the sense amplifier circuit and the drain electrode of the second transistor. The capacitor is electrically connected to the drain electrode of the first transistor and the source electrode of the second transistor.