Abstract:
A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
Abstract:
Provided is a substrate structure including a substrate body, electrical contact pads and an insulating protection layer disposed on the substrate body, wherein the insulating protection layer has openings exposing the electrical contact pads, and at least one of the electrical contact pads has at least a concave portion filled with a filling material to prevent solder material from permeating along surfaces of the insulating protection layer and the electric contact pads, thereby eliminating the phenomenon of solder extrusion. Thus, bridging in the substrate structure can be eliminated even when the bump pitch between two adjacent electrical contact pads is small. As a result, short circuits can be prevented, and production yield can be increased.
Abstract:
A packaging substrate and a package structure are provided. The packaging substrate includes a plurality of dielectric layers, two of which have a difference in thickness; and a plurality of circuit layers alternately stacked with the dielectric layers. Therefore, the package warpage encountered in the prior art is avoided.
Abstract:
An EMI shielding package structure includes a substrate unit having a first surface with a die mounting area and a second surfaces opposite to the first surface, metallic pillars formed on the first surface, a chip mounted on and electrically connected to the die-mounting area, an encapsulant covering the chip and the first surface while exposing a portion of each of the metallic pillars from the encapsulant, and a shielding film enclosing the encapsulant and electrically connecting to the metallic pillars. A fabrication method of the above structure by two cutting processes is further provided. The first cutting process forms grooves by cutting the encapsulant. After a shielding film is formed in the grooves and electrically connected to the metallic pillars, the complete package structure is formed by the second cutting process, thereby simplifying the fabrication process while overcoming inferior grounding of the shielding film as encountered in prior techniques.
Abstract:
A flip-chip packaging substrate is provided, which includes: a substrate body; a plurality of conductive pads formed on a surface of the substrate body; an insulating layer formed on the surface of the substrate body and having a plurality of openings correspondingly exposing a portion of each of the conductive pads; and a metal layer formed on each of the conductive pads in the openings, wherein the metal layer has a top surface having a lowest point lower than a top surface of the insulating layer, and a thickness ratio of the metal layer to the insulating layer is greater than or equal to 1/4 and less than 1, thereby preventing a solder bridge or short circuit from occurring.
Abstract:
A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
Abstract:
Provided is a substrate structure including a substrate body, electrical contact pads and an insulating protection layer disposed on the substrate body, wherein the insulating protection layer has openings exposing the electrical contact pads, and at least one of the electrical contact pads has at least a concave portion filled with a filling material to prevent solder material from permeating along surfaces of the insulating protection layer and the electric contact pads, thereby eliminating the phenomenon of solder extrusion. Thus, bridging in the substrate structure can be eliminated even when the bump pitch between two adjacent electrical contact pads is small. As a result, short circuits can be prevented, and production yield can be increased.
Abstract:
A semiconductor package is provided, which includes: a substrate having a metal pattern layer; a semiconductor die formed on the substrate; and an underfill filled between the substrate and the semiconductor die. At least an opening is formed in the metal pattern layer to reduce the area of the metal pattern layer on the substrate, thereby reducing the contact area between the underfill and the metal pattern layer, hence eliminating the underfill delamination.
Abstract:
A semiconductor package is disclosed, which includes: a packaging substrate; a semiconductor element disposed on the packaging substrate in a flip-chip manner; a stopping portion formed at edges of the semiconductor element; an insulating layer formed on an active surface of the semiconductor element and the stopping portion; and an encapsulant formed between the packaging substrate and the insulating layer. The insulating layer has a recessed portion formed on the stopping portion and facing the packaging substrate such that during a reliability test, the recessed portion can prevent delamination occurring between the insulating layer and the stopping portion from extending to the active surface of the semiconductor element.
Abstract:
Provided is a substrate structure including a substrate body, electrical contact pads and an insulating protection layer disposed on the substrate body, wherein the insulating protection layer has openings exposing the electrical contact pads, and at least one of the electrical contact pads has at least a concave portion filled with a filling material to prevent solder material from permeating along surfaces of the insulating protection layer and the electric contact pads, thereby eliminating the phenomenon of solder extrusion. Thus, bridging in the substrate structure can be eliminated even when the bump pitch between two adjacent electrical contact pads is small. As a result, short circuits can be prevented, and production yield can be increased.