Abstract:
A semiconductor package is provided, which includes: a substrate having a metal pattern layer; a semiconductor die formed on the substrate; and an underfill filled between the substrate and the semiconductor die. At least an opening is formed in the metal pattern layer to reduce the area of the metal pattern layer on the substrate, thereby reducing the contact area between the underfill and the metal pattern layer, hence eliminating the underfill delamination.
Abstract:
An electronic package is provided, which includes: a first substrate; a first electronic component disposed on the first substrate; a second substrate stacked on the first substrate through a plurality of first conductive elements and a plurality of second conductive elements and bonded to the first electronic component through a bonding layer; and a first encapsulant formed between the first substrate and the second substrate. The first conductive elements are different in structure from the second conductive elements so as to prevent a mold flow of the first encapsulant from generating an upward pushing force during a molding process and hence avoid cracking of the second substrate. The present disclosure further provides a method for fabricating the electronic package.
Abstract:
A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
Abstract:
A quad flat non-leaded (QFN) package structure with an electromagnetic interference (EMI) shielding function is proposed, including: a lead frame having a die pad, a plurality of supporting portions connecting to the die pad and a plurality of leads disposed around the periphery of the die pad without connecting to the die pad; a chip mounted on the die pad; bonding wires electrically connecting the chip and the leads; an encapsulant for encapsulating the chip, the bonding wires and the lead frame and exposing the side and bottom surfaces of the leads and the bottom surface of the die pad; and a shielding film disposed on the top and side surfaces of the encapsulant and electrically connecting to the supporting portions for shielding from EMI. A method of fabricating the package structure as described above is further proposed.
Abstract:
A semiconductor device is disclosed, which includes: a substrate having a plurality of connecting pads; a semiconductor component having a plurality of bonding pads formed on a surface thereof and corresponding to the connecting pads and a UBM layer formed on the bonding pads; a plurality of conductive elements each having a first conductive portion and a second conductive portion sequentially formed on the UBM layer, wherein the second conductive portion is less in width than the first conductive portion; and a plurality of solder balls formed between the second conductive portions and the connecting pads for connecting the semiconductor component and the substrate, thereby preventing solder bridging from occurring between the adjacent conductive elements and reducing stresses between the conductive elements and the UBM layer.
Abstract:
A package structure is provided, including: a board having a plurality of conductive traces; a plurality of conductive pads formed on the board and each having a height greater than a height of each of the conductive traces; and an electronic component disposed on and electrically connected to the conductive pads via a plurality of conductive elements, wherein at least one of the conductive traces is positioned in proximity of at least one of the conductive pads. Therefore, the conductive elements are prevented from being in contact with the conductive traces, and the problem that the conductive pads and the conductive traces are shorted is solved. The present invention further provides a method for fabricating the packaging substrate.
Abstract:
A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
Abstract:
An EMI shielding package structure includes a substrate unit having a first surface with a die mounting area and a second surfaces opposite to the first surface, metallic pillars formed on the first surface, a chip mounted on and electrically connected to the die-mounting area, an encapsulant covering the chip and the first surface while exposing a portion of each of the metallic pillars from the encapsulant, and a shielding film enclosing the encapsulant and electrically connecting to the metallic pillars. A fabrication method of the above structure by two cutting processes is further provided. The first cutting process forms grooves by cutting the encapsulant. After a shielding film is formed in the grooves and electrically connected to the metallic pillars, the complete package structure is formed by the second cutting process, thereby simplifying the fabrication process while overcoming inferior grounding of the shielding film as encountered in prior techniques.
Abstract:
An interconnection structure for being formed on bonding pads of a substrate in a semiconductor package is provided. The interconnection structure includes a nickel layer formed on each of the bonding pads, a metal layer formed on the nickel layer, and a solder material formed on the metal layer. The metal layer is made of one of gold, silver, lead and copper, and has a thickness in the range of 0.5 to 5 um. As such, when the solder material is reflowed to form solder bumps, no nickel-tin compound is formed between the solder bumps and the metal layer, thereby avoiding cracking or delamination of the solder bumps.
Abstract:
A package stack structure is provided, including a first substrate, a second substrate stacked on the first substrate, and an encapsulant formed between the first substrate and the second substrate. A through hole is formed to penetrate the second substrate and allow the encapsulant to be filled therein, thereby increasing the contact area and hence strengthening the bonding between the encapsulant and the second substrate.