摘要:
The invention relates to a contact structure of a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate, and wherein a surface of the strained material has received a passivation treatment; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a dielectric layer coating the sidewalls and bottom of the opening, wherein the dielectric layer has a thickness ranging from 1 nm to 10 nm; a metal barrier coating an opening of the dielectric layer; and a metal layer filling a coated opening of the dielectric layer.
摘要:
A device includes a substrate and insulation regions over a portion of the substrate. A first semiconductor region is between the insulation regions and having a first conduction band. A second semiconductor region is over and adjoining the first semiconductor region, wherein the second semiconductor region includes an upper portion higher than top surfaces of the insulation regions to form a semiconductor fin. The semiconductor fin has a tensile strain and has a second conduction band lower than the first conduction band. A third semiconductor region is over and adjoining a top surface and sidewalls of the semiconductor fin, wherein the third semiconductor region has a third conduction band higher than the second conduction band.
摘要:
A device includes a substrate and insulation regions over a portion of the substrate. A first semiconductor region is between the insulation regions and having a first conduction band. A second semiconductor region is over and adjoining the first semiconductor region, wherein the second semiconductor region includes an upper portion higher than top surfaces of the insulation regions to form a semiconductor fin. The second semiconductor region also includes a wide portion and a narrow portion over the wide portion, wherein the narrow portion is narrower than the wide portion. The semiconductor fin has a tensile strain and has a second conduction band lower than the first conduction band. A third semiconductor region is over and adjoining a top surface and sidewalls of the semiconductor fin, wherein the third semiconductor region has a third conduction band higher than the second conduction band.
摘要:
The present disclosure provides a FinFET device. The FinFET device comprises a semiconductor substrate of a first semiconductor material; a fin structure of the first semiconductor material overlying the semiconductor substrate, wherein the fin structure has a top surface of a first crystal plane orientation; a diamond-like shape structure of a second semiconductor material disposed over the top surface of the fin structure, wherein the diamond-like shape structure has at least one surface of a second crystal plane orientation; a gate structure disposed over the diamond-like shape structure, wherein the gate structure separates a source region and a drain region; and a channel region defined in the diamond-like shape structure between the source and drain regions.
摘要:
A multi-gate transistor includes a semiconductor fin over a substrate. The semiconductor fin includes a central fin formed of a first semiconductor material; and a semiconductor layer having a first portion and a second portion on opposite sidewalls of the central fin. The semiconductor layer includes a second semiconductor material different from the first semiconductor material. The multi-gate transistor further includes a gate electrode wrapping around sidewalls of the semiconductor fin; and a source region and a drain region on opposite ends of the semiconductor fin. Each of the central fin and the semiconductor layer extends from the source region to the drain region.
摘要:
A semiconductor device having an epitaxial layer a method of manufacture thereof is provided. The semiconductor device has a substrate with a trench formed therein and a recess formed below the trench. The recess has sidewalls with a (111) crystal orientation. The depth of the trench is such that the depth is greater than or equal to one-half a length of sidewalls of the recess. An epitaxial layer is formed in the recess and the trench. The depth of the trench is sufficient to cause dislocations formed between the interface of the semiconductor substrate and the epitaxial layer to terminate along sidewalls of the trench.
摘要:
A FinFET device comprises an isolation region in a substrate, wherein the isolation region comprises a plurality of non-vertical sidewalls, a first V-shaped groove, a second V-shaped groove and a third V-shaped groove formed in the substrate, a first cloak-shaped active region over the first V-shaped groove, wherein a top surface of the first cloak-shaped active region comprises a first slope, a second cloak-shaped active region over the second V-shaped groove, wherein a top surface of the second cloak-shaped active region is triangular in shape and a third cloak-shaped active region over the third V-shaped groove, wherein a top surface of the third cloak-shaped active region comprises a second slope.
摘要:
A method includes forming a silicon cap layer on a semiconductor fin, forming an interfacial layer over the silicon cap layer, forming a high-k gate dielectric over the interfacial layer, and forming a scavenging metal layer over the high-k gate dielectric. An anneal is then performed on the silicon cap layer, the interfacial layer, the high-k gate dielectric, and the scavenging metal layer. A filling metal is deposited over the high-k gate dielectric.
摘要:
A device with improved device performance, and method of manufacturing the same, are disclosed. An exemplary device includes a group III-V compound semiconductor substrate that includes a surface having a (110) crystallographic orientation, and a gate stack disposed over the group III-V compound semiconductor substrate. The gate stack includes a high-k dielectric layer disposed on the surface having the (110) crystallographic orientation, and a gate electrode disposed over the high-k dielectric layer.
摘要:
Fin structures are formed on a substrate. An isolation region is between the fin structures. The fin structures comprise epitaxial regions extending above the isolation region. Each of the epitaxial regions has a widest mid-region between an upper-surface and an under-surface. A dual-layer etch stop is formed over the fin structures and comprises a first sub-layer and a second sub-layer. The first sub-layer is along the upper- and under-surfaces and the isolation region. The second sub-layer is over the first sub-layer and along the upper-surfaces, and the second sub-layer merges together proximate the widest mid-regions of the epitaxial regions. Portions of the dual-layer etch stop are removed from the upper- and under-surfaces. A dielectric layer is formed on the upper- and under-surfaces. A metal layer is formed on the dielectric layer on the upper-surfaces. A barrier layer is formed on the metal layer and along the under-surfaces.