摘要:
The method for fabricating a nitride semiconductor of the present invention includes the steps of: (1) growing a first semiconductor layer made of a first group III nitride over a substrate by supplying a first group III source and a group V source containing nitrogen; and (2) growing a second semiconductor layer made of a second group III nitride on the first semiconductor layer by supplying a second group III source and a group V source containing nitrogen. At least one of the steps (1) and (2) includes the step of supplying a p-type dopant over the substrate, and an area near the interface between the first semiconductor layer and the second semiconductor layer is grown so that the density of the p-type dopant locally increases.
摘要:
The method for fabricating a semiconductor includes the steps of: (1) growing a first semiconductor layer made of AlxGa1−xN (0≦x≦1) on a substrate at a temperature higher than room temperature; and (2) growing a second semiconductor layer made of AluGavInwN (0
摘要翻译:制造半导体的方法包括以下步骤:(1)在高于室温的温度下,在衬底上生长由Al x Ga 1-x N(0 <= x <= 1)制成的第一半导体层; 和(2)在第一半导体层上生长由AluGavInwN(0
摘要:
The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
摘要:
According to the structure of the invention, an AlGaInP cladding layer of one conductive type, an active layer, and an AlGaInP cladding layer of other conductive type greater in thickness in stripes are formed on a GaAs substrate, and an insulating film, AlGaInP or amorphous layer smaller in refractive index than the AlGaInP cladding layer are formed at both sides of the stripes, wherein the light can be confined and guided also in the direction parallel to the active layer, and the light can be index-guided both in the direction parallel to the active layer and in the direction vertical thereto, so that a laser having an extremely smaller astigmatism may be presented. What is more, the current blocking layer disposed at the outer side of the insulating film, AlGaInP or amorphous layer is high in thermal conductivity, and the heat generated in the vicinity of the active layer may be efficiently released.The invention also relates to the method of fabricating the laser composed in such structure.
摘要:
The present invention relates to a semiconductor light emitting device comprising a sapphire substrate 11; a u-GaN layer 12 that is formed on top of the substrate 11 and that comprises a plurality of concave portions 121 formed into band-like shapes with predetermined intervals therebetween; a regrown u-GaN layer 13 formed on the u-Ga layer 12; a layered structure that is formed on the u-GaN layer 13 comprises an n-GaN layer 15, an active layer 16, and a p-GaN layer 19; an n-type electrode 24 formed on the n-GaN layer 15 exposed by removing a potion of the layered structure; and a transparent p-type electrode 20 formed on the p-GaN layer 19, wherein the p-type electrode 20 is an emission detection surface, and an air layer S is formed between the bottom surface of the u-GaN layer 13 and the concave portions 121.
摘要:
The present invention relates to a semiconductor light emitting device comprising a sapphire substrate 11; a u-GaN layer 12 that is formed on top of the substrate 11 and that comprises a plurality of concave portions 121 formed into band-like shapes with predetermined intervals therebetween; a regrown u-GaN layer 13 formed on the u-Ga layer 12; a layered structure that is formed on the u-GaN layer 13 comprises an n-GaN layer 15, an active layer 16, and a p-GaN layer 19; an n-type electrode 24 formed on the n-GaN layer 15 exposed by removing a potion of the layered structure; and a transparent p-type electrode 20 formed on the p-GaN layer 19, wherein the p-type electrode 20 is an emission detection surface, and an air layer S is formed between the bottom surface of the u-GaN layer 13 and the concave portions 121.
摘要:
The present invention lowers a drive voltage of a RRAM, which is a promising low power consumption, high-speed memory and suppresses variations in the width of an electric pulse for realizing a same resistance change. The present invention provides a variable resistance element including: a first electrode; a layer in which its resistance is variable by applying an electric pulse thereto, the layer being formed on the first electrode; and a second electrode formed on the layer; wherein the layer has a perovskite structure; and the layer has at least one selected from depressions and protrusions in an interface with at least one electrode selected from the first electrode and the second electrode.
摘要:
A semiconductor light-emitting device has first and second semiconductor layers each of a first conductivity type, a third semiconductor layer of a second conductivity type provided between the first and second semiconductor layers, and an active layer provided between the second and third semiconductor layers to emit light with charge injected therein from the second and third semiconductor layers. A graded composition layer is provided between the active layer and the third semiconductor layer to have a varying composition which is nearly equal to the composition of the active layer at the interface with the active layer and to the composition of the third semiconductor layer at the interface with the third semiconductor layer.
摘要:
A semiconductor laser device having an active layer, a pair of cladding layers interposing the active layer and a multi-quantum barrier provided between one of the pair of cladding layers and the active layer is provided, and the multi-quantum barrier includes barrier layers and well layers being alternated with each other. The semiconductor laser device also including an optical guide layer confining light generated in a quantum well layer, and the optical guide layer being undoped.