Abstract:
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomers implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
Abstract translation:公开了一种离子源,用于提供由诸如B 2 H x +,B 5 H x +,B 10 H x +,B 18 H x +,P 4 +或As 4+的离子化簇或诸如Ge +,In +,Sb +,B +,As +和P + ,以使集群植入物和单体植入物进入硅衬底以制造CMOS器件,并以高生产率进行。 离子束的范围由根据本发明的通用离子源产生,其被配置为以两种离散模式操作:电子冲击模式,其有效地产生离子簇,以及电弧放电模式,其有效地产生单体离子 。
Abstract:
Embodiments of a gas cluster ion beam apparatus and methods for forming a gas cluster ion beam using a low-pressure process source are generally described herein. In one embodiment, the low-pressure process source is mixed with a high-pressure diluent source in a static pump to form a mixed source, from which a gas cluster jet is generated and ionized to form the gas cluster ion beam. Other embodiments may be described and claimed.
Abstract:
Techniques for providing a ribbon-shaped gas cluster ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for providing a ribbon-shaped gas cluster ion beam. The apparatus may comprise at least one nozzle configured to inject a source gas at a sufficient speed into a low-pressure vacuum space to form gas clusters. The apparatus may also comprise at least one ionizer that causes at least a portion of the gas clusters to be ionized. The apparatus may further comprise a beam-shaping mechanism that forms a ribbon-shaped gas cluster ion beam based on the ionized gas clusters.
Abstract:
The present invention provides a mass spectrometer capable of breaking even a sample molecule having a large molecular weight by a CID process. In an embodiment of the present invention, the mass spectrometer includes an ionizing source 10 for turning a sample into ions, mass-separating sections 40 and 60 for mass-separating the sample ions, a detecting section 20 for detecting the mass-separated ions, and a collision section (collision cell) 51 located on an ion path extending from the ionizing source 10 through the mass-separating sections 40 and 60 to the detecting section 20. It also includes a cluster generator 30 for producing clusters of atoms or molecules. The clusters produced by the cluster generator 30 are introduced into the collision cell 51. The use of the clusters having a huge mass as the target gas in the CID process enables the collision energy of the sample ions to be efficiently assigned to the breaking of the ions.
Abstract:
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomers implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
Abstract:
A detector apparatus and its use for cluster ion beam diagnostics are described. The detector has a Faraday cup with a conductance path to a gas pressure detector and a conductance to the detector exit. The detector acquires ion current, which is a measure of the ion beam flux, and also acquires mass flux, through a pressure measurement. The pressure measurement responds to the mass of dissociated gas clusters and is combined with information about instantaneous ion current to estimate mean gas cluster ion size ({overscore (N)}i).
Abstract:
An apparatus for producing a beam of ionized clusters, having a cluster source and an ionizer, includes an electrostatic mass separator which permits only those clusters having a mass greater than a selected value to pass. Unclustered ions and clusters of smaller size are reflected and do not reach the substrate target. The mass separator has a retarding field electrode and an entrance electrode, both in the form of grids with the grid openings aligned. Use of a second electrostatic mass separator allows selection of a narrow range of cluster masses for acceleration against the substrate.
Abstract:
A beam processing system and method of operating are described. In particular, the beam processing system includes a beam source having a nozzle assembly that is configured to introduce a primary gas through the nozzle assembly to a vacuum vessel in order to produce a gaseous beam, such as a gas cluster beam, and optionally, an ionizer positioned downstream from the nozzle assembly, and configured to ionize the gaseous beam to produce an ionized gaseous beam. The beam processing system further includes a process chamber within which a substrate is positioned for treatment by the gaseous beam, and a secondary gas source, wherein the secondary gas source includes a secondary gas supply system that delivers a secondary gas, and a secondary gas controller that operatively controls the flow of the secondary gas injected into the beam processing system downstream of the nozzle assembly.
Abstract:
A method of smoothing a solid surface with a gas cluster ion beam includes irradiating the solid surface with the gas cluster ion beam. The irradiating includes, when scratches which can be likened to a line-and-space pattern structure with widths and heights on the order of a submicrometer to micrometer are present on the solid surface, a process of emitting the gas cluster ion beam so as to expose substances, which remain on side-walls of the scratches due to lateral transferal caused by collisions with gas clusters, to other gas clusters, and the gas cluster ion beam diverges non-concentrically and/or non-uniformly.
Abstract:
A method of processing one or more surfaces is provided, comprising: providing a switchable ion gun which is switchable between a cluster mode setting for producing an ion beam substantially comprising ionized gas clusters for irradiating a surface and an atomic mode setting for producing an ion beam substantially comprising ionized gas atoms for irradiating a surface; and selectively operating the ion gun in the cluster mode by mass selecting ionized gas clusters using a variable mass selector thereby irradiating a surface substantially with ionized gas clusters or the atomic mode by mass selecting ionized gas atoms using a variable mass selector thereby irradiating a surface substantially with ionized gas atoms. Also provided is a switchable ion gun comprising: a gas expansion nozzle for producing gas clusters; an ionization chamber for ionizing the gas clusters and gas atoms; and a variable (preferably a magnetic sector) mass selector for mass selecting the ionized gas clusters and ionized gas atoms to produce an ion beam variable between substantially comprising ionized gas clusters and substantially comprising ionized gas atoms. Preferably, the gun comprises an electrically floating flight tube for adjusting the energy of the ions while within the mass selector.