Abstract:
Keys for an electronic musical instrument which is capable of giving an after-touch effect is disclosed. If a key is pressed, the point contact rubber is also pressed to point-contact-operate the circuit board, and at the same time, the point contact pin of the key is contacted with the point contact rubber, so that its contact with the circuit board should be transmitted to the hand of the player in the form of an after-touch effect.
Abstract:
A semiconductor device includes a semiconductor substrate, a circuit layer including an interlayer insulating layer on an upper surface of the substrate, and a conductive via penetrating through the interlayer insulating layer and the substrate, and electrically connected to the circuit layer. The device further includes an insulating layer surrounding the conductive via, and located between the conductive via and the substrate and between the conductive via and interlayer insulating layer, and a buffer layer located between the insulating layer and the conductive via, and overlapping at least a portion of the interlayer insulating layer in a depth direction of the conductive via.
Abstract:
Provided herein are semiconductor devices with through electrodes and methods of fabricating the same. The methods may include providing a semiconductor substrate having top and bottom surfaces facing each other, forming on the top surface of the semiconductor substrate a main via having a hollow cylindrical structure and a metal line connected to the main via, forming an interlayered insulating layer on the top surface of the semiconductor substrate to cover the main via and the metal line, removing a portion of the semiconductor substrate to form a via hole exposing a portion of a bottom surface of the main via, and forming in the via hole a through electrode that is electrically connected to the main via. The bottom surface of the main via is overlapped by a circumference of the via hole, when viewed in a plan view.
Abstract:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
Abstract:
A microelectronic device includes a substrate having a trench extending therethrough between an active surface thereof and an inactive surface thereof opposite the active surface, a conductive via electrode extending through the substrate between sidewalls of the trench, and an insulating layer extending along the inactive surface of the substrate outside the trench and extending at least partially into the trench. The insulating layer defines a gap region in the trench that separates the substrate and the via electrode. Related devices and methods of fabrication are also discussed.
Abstract:
An image processing apparatus is provided. The image processing apparatus for image signal processor (ISP) realization may include a Static Random Access Memory (SRAM) for each function module. A unified SRAM to store at least one line data of an input image for each of a plurality of functions modules within the image processing apparatus is further provided.
Abstract:
A semiconductor device including a lower layer, an insulating layer on a first side of the lower layer, an interconnection structure in the insulating layer, a via structure in the lower layer. The via structure protrudes into the insulating layer and the interconnection structure.
Abstract:
A semiconductor device may include a substrate and a through electrode. The substrate may have a first surface and a second surface opposite to the first surface, the substrate including circuit patterns formed on the first surface. The through electrode penetrates the substrate and may be electrically connected to the circuit pattern, the through electrode including a first plug that extends from the first surface in a thickness direction of the substrate and a second plug that extends from the second surface in the thickness direction of the substrate so as to be connected to the first plug.
Abstract:
Provided are semiconductor devices and methods of manufacturing the same. the device may include a semiconductor substrate, a first conductive pattern provided in the semiconductor substrate to have a first width at a surface level of the semiconductor substrate, a barrier pattern covering the first conductive pattern and having a second width substantially greater than the first width, a second conductive pattern partially covering the barrier pattern and having a third width substantially smaller than the second width, and an insulating pattern disposed on a sidewall of the second conductive pattern. The second width may be substantially equal to or less than to a sum of the third width and a width of the insulating pattern.
Abstract:
Provided is a method of establishing an uplink in a mobile satellite communication system, the method including: receiving a random uplink access signal from terminals included in a coverage of a satellite beam; estimating a location of each of the terminals; calculating an uplink transmission point in time when each of the terminals transmits an uplink signal, based on the estimated location of each of the terminals; transmitting, to each of the terminals, the calculated uplink transmission point in time; and receiving the uplink signal from each of the terminals at the calculated uplink transmission point in time.