摘要:
A semiconductor device may include a substrate and a through electrode. The substrate may have a first surface and a second surface opposite to the first surface, the substrate including circuit patterns formed on the first surface. The through electrode penetrates the substrate and may be electrically connected to the circuit pattern, the through electrode including a first plug that extends from the first surface in a thickness direction of the substrate and a second plug that extends from the second surface in the thickness direction of the substrate so as to be connected to the first plug.
摘要:
A semiconductor device may include a substrate and a through electrode. The substrate may have a first surface and a second surface opposite to the first surface, the substrate including circuit patterns formed on the first surface. The through electrode penetrates the substrate and may be electrically connected to the circuit pattern, the through electrode including a first plug that extends from the first surface in a thickness direction of the substrate and a second plug that extends from the second surface in the thickness direction of the substrate so as to be connected to the first plug.
摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
摘要:
A printed circuit board and a semiconductor package module using the same in which solder joint reliability (SJR) is improved. The printed circuit board includes: a first terminal exposed to the external of the printed circuit board in a print circuit pattern to be connected to a solder ball of a semiconductor package; a second terminal exposed to the external of the printed circuit board in the printed circuit pattern to be connected to another printed circuit board; and a buffer layer, which is an insulating layer formed adjacent the first terminal, being formed of a thermal absorption material, e.g. an elastomer, configured to absorb thermal stress caused by any difference of coefficients of thermal expansion between the semiconductor package and the first terminal, wherein the printed circuit board is a multi-layered printed circuit board including alternately layered insulators and printed circuit patterns.
摘要:
A flip chip device may have a semiconductor chip with an active surface on which chip pads and a protective layer may be provided. Solder bumps may be provided on the active surface and electrically connected to the chip pads. And a solder bar may be provided on a portion of the protective layer. The solder bar may disperse thermal stress produced in the solder bumps. A metal core may be embedded within the solder bar. The flip chip device may be mounted on and flip-chip bonded to a substrate. The substrate may have land pads to which the solder bumps and the solder bar may be mechanically joined. The solder bar increases a joint area between the flip chip device and the substrate and reinforces solder connections therebetween.
摘要:
An interconnection structure includes an integrated circuit (IC) chip having internal circuitry and a terminal to electrically connect the internal circuitry to an external circuit, a passivation layer disposed on a top surface of the IC chip, the passivation layer configured to protect the internal circuitry and to expose the terminal, an input/output (I/O) pad, where the I/O pad includes a first portion in contact with the terminal and a second portion that extends over the passivation layer, and an electroless plating layer disposed on the I/O pad.
摘要翻译:互连结构包括具有内部电路的集成电路(IC)芯片和用于将内部电路电连接到外部电路的端子,设置在IC芯片的顶表面上的钝化层,钝化层被配置为保护内部电路 以及使所述终端暴露于所述I / O焊盘包括与所述端子接触的第一部分和在所述钝化层上延伸的第二部分的输入/输出(I / O)焊盘,以及设置在所述钝化层上的无电镀层 I / O板。
摘要:
A method of forming a solder bump may involve forming a first photoresist pattern on a wafer having a pad. The first photoresist pattern may have an opening that exposes a portion of the pad. A first under bump metallurgy (UBM) layer may be formed on the pad, and a second UBM layer may be formed on the first photoresist pattern. A second photoresist pattern may be formed that exposes the first UBM layer and covers the second UBM layer. A solder bump may be formed in the opening. The second photoresist pattern and the first photoresist pattern may be removed using a stripper, thereby removing the second UBM layer by a lift-off method.
摘要:
Example embodiments of a semiconductor chip packaging apparatus and method thereof are disclosed. The packaging apparatus includes a plating unit that is disposed in a direction to form a conductive plating layer on external terminals of the semiconductor chip package; and a reflow unit that is disposed with the plating unit to melt the conductive plating layer. The packaging apparatus may further include a rinsing unit that is disposed with the plating unit to clean and cool the conductive plating layer. Thus, it is possible to effectively suppress the growth of whiskers on the plating layer of the external terminals, and to secure economical efficiency, reducing costs, and allowing mass production.
摘要:
The chip package includes a first and second semiconductor chip. The first semiconductor chip has a first connection structure that electrically connects to a bond pad on a first surface of the first semiconductor chip. The second semiconductor chip has a second connection structure. The second connection structure is electrically connected to a bond pad on a first surface of the second semiconductor chip and extends through the second semiconductor chip to a second surface of the second semiconductor chip. A portion of the second connection structure extending to the second surface of the second semiconductor chip is electrically connected to the first connection structure and formed of a harder material than the first connection structure.