摘要:
A microelectronic device includes a substrate having a trench extending therethrough between an active surface thereof and an inactive surface thereof opposite the active surface, a conductive via electrode extending through the substrate between sidewalls of the trench, and an insulating layer extending along the inactive surface of the substrate outside the trench and extending at least partially into the trench. The insulating layer defines a gap region in the trench that separates the substrate and the via electrode. Related devices and methods of fabrication are also discussed.
摘要:
A microelectronic device includes a substrate having a trench extending therethrough between an active surface thereof and an inactive surface thereof opposite the active surface, a conductive via electrode extending through the substrate between sidewalls of the trench, and an insulating layer extending along the inactive surface of the substrate outside the trench and extending at least partially into the trench. The insulating layer defines a gap region in the trench that separates the substrate and the via electrode. Related devices and methods of fabrication are also discussed.
摘要:
Provided are semiconductor devices and methods of manufacturing the same. the device may include a semiconductor substrate, a first conductive pattern provided in the semiconductor substrate to have a first width at a surface level of the semiconductor substrate, a barrier pattern covering the first conductive pattern and having a second width substantially greater than the first width, a second conductive pattern partially covering the barrier pattern and having a third width substantially smaller than the second width, and an insulating pattern disposed on a sidewall of the second conductive pattern. The second width may be substantially equal to or less than to a sum of the third width and a width of the insulating pattern.
摘要:
Provided are semiconductor devices and methods of manufacturing the same. the device may include a semiconductor substrate, a first conductive pattern provided in the semiconductor substrate to have a first width at a surface level of the semiconductor substrate, a barrier pattern covering the first conductive pattern and having a second width substantially greater than the first width, a second conductive pattern partially covering the barrier pattern and having a third width substantially smaller than the second width, and an insulating pattern disposed on a sidewall of the second conductive pattern. The second width may be substantially equal to or less than to a sum of the third width and a width of the insulating pattern.
摘要:
In one embodiment, the method includes forming a conductive via structure in a base layer. The base layer has a first surface and a second surface, and the second surface is opposite the first surface. The method further includes removing the second surface of the base layer to expose the conductive via structure such that the conductive via structure protrudes from the second surface, and forming a first lower insulating layer over the second surface such that an end surface of the conductive via structure remains exposed by the first lower insulating layer.
摘要:
A conductive via of a semiconductor device is provided extending in a vertical direction through a substrate, a first end of the conductive via extending through a first surface of the substrate, so that the first end protrudes in the vertical direction relative to the first surface of the substrate. An insulating layer is provided on the first end of the conductive via and on the first surface of the substrate. An upper portion of a mask layer pattern is removed so that a capping portion of the insulating layer that is on the first end of the conductive via is exposed. A portion of the insulating layer at a side of, and spaced apart from, the conductive via, is removed, to form a recess in the insulating layer. The capping portion of the insulating layer on the first end of the conductive via is simultaneously removed.
摘要:
Provided are a metal interconnect of a semiconductor device and a method of fabricating the metal interconnect. The metal interconnect includes a metal line having a first end and a second end disposed on an opposite side to the first end, a via electrically connected to the metal line, and a non-active segment extending from the first end and including a void. Tensile stress is decreased to prevent a void from occurring under the via. Accordingly, line breakage due to electromigration is substantially prevented, thus improving electrical characteristics of the device.
摘要:
A semiconductor device may include a semiconductor substrate, a through via electrode, and a buffer. The through via electrode may extend through a thickness of the semiconductor substrate with the through via electrode surrounding an inner portion of the semiconductor substrate so that the inner portion of the semiconductor substrate may thus be isolated from the outer portion of the semiconductor substrate. The buffer may be in the inner portion of the semiconductor substrate with the through via electrode surrounding and spaced apart from the buffer. Related methods are also discussed.
摘要:
Provided are a semiconductor chip and a method of manufacturing the same. The semiconductor chip includes a substrate having a first side and a second side facing each other, and a through electrode being disposed in a hole penetrating the substrate, wherein an opening surrounded by the through electrode is disposed in the hole, wherein the opening comprises a first end adjacent to the first side of the substrate and a second end adjacent to the second side of the substrate
摘要:
A semiconductor device may include a semiconductor substrate, a through via electrode, and a buffer. The through via electrode may extend through a thickness of the semiconductor substrate with the through via electrode surrounding an inner portion of the semiconductor substrate so that the inner portion of the semiconductor substrate may thus be isolated from the outer portion of the semiconductor substrate. The buffer may be in the inner portion of the semiconductor substrate with the through via electrode surrounding and spaced apart from the buffer. Related methods are also discussed.