Abstract:
The present invention provides a method of plating an electrical contact on an integrated circuit (IC) substrate manufactured from a rigid double-sided or multi-layered printed wiring board core with dielectric layers on both sides of the core. The method may include forming electrically connected plating layers on first and second opposing sides of a substrate and electroplating a contact layer over each of the plating layers using the plating layers. The method further includes removing a portion of the plating layers from the first and second opposing sides while leaving the plating layers under the contact layer.
Abstract:
A multi-layer stripline assembly interconnection includes a first stripline sub-assembly having a first surface and a first plurality of vias disposed in the first surface adapted to receive a plurality of solid metal balls. The interconnection further includes a second stripline sub-assembly having a second plurality of vias disposed in the first surface of the second sub-assembly adapted to be aligned with the first plurality of vias. Reflowed solder is wetted to the second plurality of vias and to the corresponding plurality of solid metal balls.
Abstract:
The present invention relates to a thin film circuit board device having passive elements in wiring layers. The thin film circuit board device includes a base board (2) and a circuit part (3) including insulating layers (11) and (16) and pattern wiring (14) and (17) formed on a build-up forming surface (2a). On the first insulating layer (11), a receiving electrode part (21) is formed and the passive elements electrically connected to the receiving electrode part (21) are formed. In the circuit part (3), a substrate titanium film and a substrate film are laminated so as to cover the receiving electrode part (21) and the passive elements respectively. The substrate film and the substrate titanium film in areas in which a metallic film is not formed are etched through the metallic film serving as the first pattern wiring (14) formed on the substrate film as a mask. Thus, a substrate layer (23) and a substrate titanium layer (22) are formed. Consequently, the substrate titanium film serving as the substrate titanium layer (22) prevents the corrosion of the receiving electrode part and the respective passive elements due to etching liquid to form the passive elements with high performance.
Abstract:
A technique for reducing the number of layers in a multilayer circuit board is disclosed. The multilayer circuit board has a plurality of electrically conductive signal layers for routing electrical signals to and from at least one electronic component mounted on a surface of the multilayer circuit board. In one embodiment, the technique is realized by a method for reducing the number of layers in a multilayer circuit board, the multilayer circuit board having a plurality of electrically conductive signal layers for routing electrical signals to and from at least one electronic component mounted on a surface of the multilayer circuit board. The method comprises the steps of: forming a plurality of electrically conductive vias in the multilayer circuit board extending from the surface of the multilayer circuit board to at least one of the plurality of electrically conductive signal layers; arranging the surface such that a first set of two power/ground pins corresponds to first via and a second set of two power/ground pins corresponds to a second via positioned adjacent the first via, thereby creating a channel; and routing a first plurality of electrical signals through the channel on the first of the plurality of electrically conductive signal layers.
Abstract:
A printed circuit architecture includes a relatively thick, stiffening base of thermally and electrically conductive material, and a laminate of conductive layers including a printed circuit structure, interleaved with dielectric layers, disposed atop the base. The patterned conductive layers contain an integrated circuit structure that is configured to provide RF signaling, microstrip shielding, and digital and analog control signal leads, and DC power. Low inductance electrical connectivity among the conductive layers and also between conductive layers and the base is provided by a plurality of conductive bores. Selected bores are counter-drilled at the RF signaling layer and filled with insulating plugs, which prevent shorting of the RF signal trace layer to ground, during solder reflow connection of leads of circuit components to the RF signaling layer.
Abstract:
A capacitor is formed between a lower wiring layer and an upper wiring layer in an interior of a circuit board. The capacitor is formed of a lower metallic layer which is of at least one valve metal selected from the group consisting of aluminum, tantalum, niobium, tungsten, vanadium, bismuth, titanium, zirconium and hafnium, a dielectric layer which is of an oxide of the valve metal which may be the same as or different from the valve metal of the lower metallic layer, an intermediate layer which is of a solid electrolyte, and an upper metallic layer which is of an electrode metal, laminated in this order.
Abstract:
A technique for electrically interconnecting electrical signals between an electronic component and a multilayer signal routing device is disclosed. In one particular exemplary embodiment, the technique may be realized as an interconnect array for electrically interconnecting electrical signals between an electronic component and a multilayer signal routing device having a plurality of electrically conductive signal path layers. In such a case, the interconnect array comprises a plurality of electrically conductive contacts grouped into a plurality of arrangements of electrically conductive contacts, wherein each of the plurality of arrangements of electrically conductive contacts are separated from other adjacent ones of the plurality of arrangements of electrically conductive contacts by a channel that is correspondingly formed in the multilayer signal routing device such that an increased number of electrical signals may be routed therein on the plurality of electrically conductive signal path layers.
Abstract:
A method for manufacturing a circuit board having a conductive via comprises the steps of providing a substrate having a first surface and a first conductive layer on at least one region of the first surface, forming an insulating layer on the first conductive layer, forming an opening in the insulating layer, so that the opening extending to the first conductive layer, forming a second conductive layer inside the opening and at least on the insulating layer near the opening, applying a positive photoresist on the second conductive layer, exposing the positive photoresist, developing the exposed positive photoresist, and removing the positive photoresist on the second conductive layer, except a portion of the second conductive layer that is inside the opening, etching the second conductive layer, to expose a surface of the second conductive layer, removing the positive photoresist from inside the opening, and forming a third conductive layer inside the opening.
Abstract:
A method for manufacturing a double-sided circuit board from a board material having a first electric conductor layer and a first electrically insulating layer, including the steps of: making conduction holes in the board material so as to penetrate only the first electrically insulating layer or both the first electrically insulating layer and the first electric conductor layer; forming an electrically conductive thin-film layer on a surface of the first electrically insulating layer and wall surfaces of the conduction holes; forming a second electrically insulating layer on the electrically conductive thin-film layer; forming a first electric conductor wiring by electroplating on predetermined portions of the electrically conductive thin-film layer; covering the first electric conductor wiring with a chemical-resistant film; forming a second electric conductor wiring by chemically dissolving a predetermined portion of another surface of the first electric conductor layer; and removing the second electrically insulating layer and the film.
Abstract:
A method for fabricating a printed circuit board includes the steps of: fabricating a printed circuit board having at least one collapsed portion; depositing a first solder resist in the collapsed portion; exposing the first solder resist-coated printed circuit board at a pressure lower than atmospheric pressure for a predetermined time; coating a second solder resist on the entire surface of the printed circuit board; and drying and hardening the first and the second solder resists. With this method, when a solder resist is coated, since an air space does not remain in a blind via hole, the reliability of the attachment between a printed circuit board and the solder resist layer is increased.