Abstract:
The techniques introduced here provide for network assisted device-to-device communication for peer-to-peer applications. The techniques include registering a user's peer-to-peer application identifier with a peer-to-peer application server, registering a peer-to-peer application with a device-to-device server, sending a peer-to-peer service request to the peer-to-peer application server, and receiving network assistance in discovering a peer with the desired P2P content/service and establishing a device-to-device communication arrangement for exchange of peer-to-peer services.
Abstract:
Session continuity may be maintained when communication devices transition from communicating through network infrastructure (e.g., through a cellular network) to direct mode communications (e.g., a communication path directly between two communication devices). For example, in switching from an infrastructure mode communication path to a direct mode communication path, a method may include: determining a public-facing address corresponding to the infrastructure path; replacing, for a packet that is to be transmitted over the direct mode communication path to a second communication device, a source address field of the packet with the determined public-facing address; and encapsulating the packet with source and destination address fields corresponding to the first and second communication device through the direct mode communication path respectively.
Abstract:
Embodiments described herein relate generally to efficient network-assisted communication between user equipment (“UE”). A first UE may be adapted to determine a plurality of hash values associated with provision of a resource by the first UE. The first UE may further determine a port at which the resource is available to be provided. The first UE may communicate this information to a server. Where a second UE wishes to consume the resource, the second UE may determine a plurality of hash values that correspond to those determined by the first UE. The second UE may transmit these determined hash values to the server. In response, the server may transmit the port and an IP address associated with the first UE to the second UE. The server may further facilitate D2D communication between the UEs for provision of the resource. Other embodiments may be described and/or claimed.
Abstract:
A method and apparatus to manage interference in a multi-cellular network is disclosed. This approach uses downlink power control to allow a serving femto access point of a plurality of femto access points to transmit signals at a first power level to ensure a quality of service level of a service provided to a first plurality of mobile stations served by the plurality of femto access points. This approach also uses the downlink power control to adjust a power level of the signals transmitted by a serving femto access point of the plurality of the femto access points to manage interference caused by the serving femto access point on a second plurality of mobile stations served by one or more macro base stations.
Abstract:
This disclosure is directed to a dynamic data compression system. A device may request data comprising certain content from a remote resource. The remote resource may determine if any part of the content is identical or similar to content in other data and if the other data is already on the requesting device. Smart compression may then involve transmitting only the portions of the content not residing on the requesting device, which may combine the received portions of the content with the other data. In another example, a capturing device may capture at least one of an image or video. Smart compression may then involve transmitting only certain features of the image/video to the remote resource. The remote resource may determine image/video content based on the received features, and may perform an action based on the content. In addition, a determination whether to perform smart compression may be based on system/device conditions.
Abstract:
A technology for network-level device proximity detection is disclosed. In an example, core network (CN) device can include computer circuitry configured to: Store user equipment (UE) information; calculate proximity between two UEs; and assist the two UEs with direct device discovery based on the calculated proximity. The core network device can include a proximity services (ProSe) server, a gateway mobile location center (GMLC), an evolved serving mobile location center (E-SMLC), or a mobility management entity (MME).
Abstract:
A method and system for operator-assisted device-to-device (D2D) discovery is disclosed, which method may be executed as instructions on a machine, where the instructions are included on at least one computer readable medium. The method can include a transmission station in an operator network receiving a request for data service from a requesting wireless device. The transmission station can identify a serving wireless device to provide the data service for the requesting wireless device. The transmission station can transmit a device discovery message to the requesting wireless device and the serving wireless device. The device discovery message provides a device discovery period for communication via an ad-hoc, D2D network between the requesting wireless device and the serving wireless device. The ad-hoc, D2D network provides for device-to-device communication.
Abstract:
Embodiments of system and method configurations for device discovery and connection establishment in connection with use of device-to-device (D2D) and proximity-based services are generally described herein. In some examples, an evolved packet core (EPC) of a 3GPP Long Term Evolution or 3GPP Long Term Evolution-Advanced (LTE/LTE-A) network is arranged to assist D2D identification and discovery procedures at user equipment (UEs) connected to the LTE/LTE-A network. Various identification and discovery procedures may be implemented in connection with proximity detection and the establishment of communication times for the establishment of the D2D communication link, between the UEs. Accordingly, the EPC of the LTE/LTE-A network may assist the establishment of a device-to-device communication link between UEs on a wireless network employing a distinct wireless protocol (for example, a direct wireless network connection via a wireless local area network (WLAN) or wireless personal area network (WPAN)).
Abstract:
An apparatus and method to centrally establish and control intra-cell device-to-device connections on licensed bands of a wireless communications network are disclosed herein. An eNodeB receives a request from a first device to communicate with a second device or a request from the first device for content or service. The eNodeB schedules a device discovery between the first device and at least a candidate device. The eNodeB determines establishing the device-to-device connection between the first device and the candidate device based on a discovery report generated by one of the first or candidate device. The discovery report comprises information about signal quality of transmission from the other one of the first or candidate device that is received by the one of the first or candidate device during the scheduled device discovery.
Abstract:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for opportunistically transitioning service flows of mobile devices between being direct and indirect. In various embodiments, a proximity between first and second mobile devices that are in wireless communication with each other may be monitored. In various embodiments, a selective transition of a service flow between the first and second mobile devices from being indirect through the radio network access node using a first radio access technology (“RAT”) to being direct using a second RAT may be facilitated, e.g., responsive to a determination that a first criterion has been met. In various embodiments, a selective transition of the service flow from being direct using the second RAT to being indirect using the first RAT may be facilitated, e.g., responsive to a determination that a second criterion has been met.