Abstract:
The present invention discloses an electronic package to contain and protect an integrated circuit (IC) chip. The electronic package further includes a leadframe, a flexible circuit or PCB type of substrate. The leadframe, flexible circuit or PCB type substrate further includes solder contacts, which are aligned with via holes in the molding layers on the top and bottom sides of the package. These via holes are for placing solder paste or solder balls from above and below for electrical access to the IC chip. These solder balls provide access for electrical testing after the package is mounted on a motherboard. They also provide the connection points for stacking multiple packages vertically.
Abstract:
The present invention includes a chip-embedded support-frame wrapped-by-flex-circuit package assembly. The package assembly includes a flex circuit having a plurality of patterned connecting-traces. The package assembly further includes a plurality of semiconductor chips mounted on the flex circuits wherein the semiconductor chips having a plurality of contact terminals connected to corresponding connecting traces on the flex circuit. The package assembly further includes a support frame-board having an edge surface placed along predefined folded lines on the flex circuit. The frame-board has a plurality of open spaces for disposing each of the semiconductor chips therein. The flex circuit is provided for folding onto the support frame along the predefined folded lines to form the chip-embedded support-frame wrapped-by-flex-circuit package.
Abstract:
A semiconductor die (14) is mounted over a power supply surface (24, 52, 62). Signal bonding pads (18) on the die are wire bonded to corresponding leads (38) of a leadframe. Power supply bonding pads (20, 21) on the die are wire bonded to the power supply surface. A package body (22, 42, 56) surrounds the semiconductor die, the wire bonds (32, 34, 40, 40'), and the power supply surface. The power supply pad terminals are accessible from the bottom of the package body of the device through a plurality of conductive apertures (28, 56) disposed in the lower half of the package body. Power supply solder bumps (12, 58) are connected to the power supply surface inside the package body through the conductive apertures. The leads are used provide input and out signals for the device around the periphery of the device, while the solder bumps are disposed in an array format on the package body.
Abstract:
A semiconductor (30) is shielded from electromagnetic interference by a combination of a reference plane (22) of a circuitized substrate (12) and two different encapsulants. The first encapsulant (38) is an electrically insulative encapsulant which mechanically protects a semiconductor die (32). The first encapsulant is constrained by a dam structure (40) so as not to encapsulate conductive reference pads (18) which are electrically connected to the reference plane by conductive vias (20). A second encapsulant (42) is dispensed over the first encapsulant and is in contact with the reference pads. The second encapsulant is an electrically conductive encapsulant, and is preferably made of a precursor material having the same or similar properties as that of the first encapsulant, but is filled with conductive filler particles to establish electrical conductivity of the encapsulant. Accordingly, the semiconductor die is effectively shielded from both the top and bottom by the electrically conductive encapsulant and the reference plane.
Abstract:
A semiconductor device is disclosed having an electronic component mounted to a mounting surface opposite a heat transfer surface of a die support member. The electronic component includes a plurality of bonding pads each electrically coupled to a plurality of package leads by a number of inner leads. A package body encloses the electronic component, the inner leads, the proximal ends of the package leads and the mounting surface of the die support member. The package body includes an opening exposing a portion of the heat transfer surface of the die support member. An insertable thermally conductive heat sink extends into the opening in the package body making thermal contact with the heat transfer surface of the die support member. A thermally conductive electrically insulating adhesive joins the heat sink to the package body securing the heat sink to the package body. In the assembly process, the package body is formed prior to attachment of the heat sink. During the process of soldering the package leads of the semiconductor device to a mounting substrate, gasses within the package body can escape through the opening before excessive pressure buildup occurs within the package body.
Abstract:
The disclosed invention comprises multiple semiconductor devices within a single carrier structure. In accordance with one embodiment of the invention, a plurality of semiconductor die are coupled to the leads of a leadframe and are encapsulated by individual package bodies. A carrier structure is formed which encircles all of the die and encapsulates portions of the distal ends of the leads. The extreme distal portions of the leads extend through the carrier to form contact points which are used to access the semiconductor die. By having multiple devices within a single carrier, productivity is improved and costs associated with leadframe and carrier structure materials are reduced.
Abstract:
An electronic pad array carrier IC device for mounting on a printed circuit board (PCB) or flex circuit substrate has a thin, flexible "tape" substrate having a plurality of traces. The substrate may be a polyimide or other material that can withstand relatively large lateral mechanical displacement. An integrated circuit die is mounted in proximity with or on the substrate and electrical connections between the integrated circuit chip and the traces are made by any conventional means. The substrate traces are provided at their outer ends with solder balls or pads for making connections to the PCB. A package body covers the die, which body may be optionally used to stand off the package a set distance from the PCB so that the solder balls will form the proper concave structure. Alternatively, a carrier structure may be provided around the periphery of the substrate to add rigidity during handling, testing and mounting, but which may also provide the stand-off function. The thin, flexible substrate can absorb a relatively large lateral or even vertical mechanical displacement over a rather large package area that may accommodate as few as 20 or as many 500 or more connections. The substrate may be optionally transparent or translucent to permit inspection of the bonds after mounting to the PCB. The PCB or flex circuit may also be transparent or translucent for bond inspection purposes. The solder pads or balls may be joined to a via through the substrate at least partially filled with electrically conductive material to permit back side testing of the carrier before or after mounting of the package to the PCB. Additionally, a heat sink structure may be directly bonded to the die in the pad array carrier IC device.
Abstract:
A method for forming an integrated circuit interconnect pad is described. In one embodiment a method of forming an integrated circuit comprises screen printing a conductive paste onto a terminal metalization pad and curing the conductive paste in an inert or reducing atmosphere at an elevated temperature to form an under-bump metalization layer of an interconnect pad. The elevated temperature is below a melting temperature of the terminal metalization pad.
Abstract:
The present invention discloses a method for mounting multiple integrated circuit (IC) chips on a top surface of a substrate. The method includes a step forming a first footprint to include a plurality of electrical contacts on the top surface for mounting a first IC chip thereon. The method further includes a step of forming a set of substrate testing footprints to include a plurality of package mounting and testing electrical contacts for temporarily mounting a plurality of testing packages to conduct a functional MCM test. The functional MCM test is to test the substrate mounted with the first IC chip and the testing packages.
Abstract:
The present invention discloses an improved method for carry out a flip chip packaging process for attaching a semiconductor integrated circuit (IC) wafer having a plurality of input/output terminals, to a substrate. The method includes the steps of: 1) securely placing a plurality of solder balls on the substrate with each of said solder balls corresponding to a location of one of the input/output terminals on the integrated circuit wafer; 2) flipping the integrated circuit wafer for aligning each of the input/output terminals of the IC wafer to one of the solder balls; and 3) mounting the IC wafer onto the substrate for placing the I/O terminals on a corresponding solder ball and applying a reflow temperature for soldering the IC wafer to the substrate.