摘要:
The invention discloses a multi-chip stack structure having through silicon via and a method for fabricating the same. The method includes: providing a wafer having a plurality of first chips; forming a plurality of holes on a first surface of each of the first chips and forming metal posts and solder pads corresponding to the holes so as to form a through silicon via (TSV) structure; forming at least one groove on a second surface of each of the first chips to expose the metal posts of the TSV structure so as to allow at least one second chip to be stacked on the first chip, received in the groove and electrically connected to the metal posts exposed from the groove; filling the groove with an insulating material for encapsulating the second chip; mounting conductive elements on the solder pads of the first surface of each of the first chips and singulating the wafer; and mounting and electrically connecting the stacked first and second chips to a chip carrier via the conductive elements. The wafer, which is not totally thinned but includes a plurality of first chips, severs a carrying purpose during the fabrication process and thereby solves problems, namely a complicated process, high cost, and adhesive layer contamination, facing the prior art that entails repeated use of a carrier board and an adhesive layer for vertically stacking a plurality of chips and mounting the stacked chips on a chip carrier.
摘要:
A stacked package structure and fabrication method thereof are disclosed, including providing a substrate having a plurality of stackable solder pads formed on surface thereof for allowing at least one semiconductor chip to be electrically connected to the substrate; forming an encapsulant for encapsulating the semiconductor chip and further exposing the stackable solder pads from the encapsulant, thus forming a lower-layer semiconductor package; forming conductive bumps on at least one stackable solder pad by means of wire bonding such that at least one upper-layer semiconductor package can be mounted via solder balls on the conductive bumps and the stackable solder pads of the lower-layer semiconductor package to form a stacked package structure, wherein, stacking height of the solder balls and the conductive bumps is greater than height of the encapsulant of the lower-layer semiconductor package, thus, when stacking fine pitch semiconductor packages or when warps occur to the upper-layer semiconductor package or the lower-layer semiconductor package, the conductive bumps can compensate for inadequate height caused by solder ball collapse or fill up gaps between the solder balls and the stackable solder pads caused by warps, thereby allowing the solder balls to be able to effectively contact and wet on the substrate of the lower-layer semiconductor package.
摘要:
A semiconductor device and a fabrication method thereof are disclosed. The method includes attaching a wafer with a plurality of chips on a carrier board having an insulating layer, a plurality of conductive circuits and a bottom board; forming a plurality of first grooves between solder pads of adjacent chips to expose the conductive circuits, and filling the first grooves with an insulating adhesive layer; forming second grooves in the insulating adhesive layer; and cutting among the chips to separate the chips from one another.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
A semiconductor package includes two substrates each having a plurality of electrical connection pads, at least one chip mounted on each of the substrates, an encapsulation body formed on each of the substrates for encapsulating the chip, and an cover for receiving the substrates and the chips therein. The chip is electrically connected to the electrical connection pads. The electrical connection pads are exposed from the cover and located on the same surface or oppositely arranged. The substrates and the cover each substantially has a rectangular shape, with a longer side of each of the substrates being vertical to a longer side of the cover. The semiconductor package is incorporated with multiple chips to enhance the performance and memory capacity thereof, and the substrates are smaller than those in the prior art and thus are more cost-effective to fabricate.
摘要:
The present invention provides different schemes for reducing the size (such as thickness) of at least a semiconductor unit (such as an IC chip) which is to be packaged. It replaces, in packaging at least a semiconductor unit, conventional grinding processes by etching schemes, particularly when the thickness of the semiconductor unit approximates an expected specification. The etching process may be embodied in a way that a semiconductor unit attached to a carrier such as a substrate, or placed onto a seating apparatus such as a chip tray, and properly shielded, is etched by means of using gas such as plasma, or beams of light. The semiconductor unit packaged according to the scheme provided by the present invention can thus be immunized against the failure resulting from die crack or back-side chipping.
摘要:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficulty.
摘要:
The invention discloses a multi-chip stack structure having through silicon via and a method for fabricating the same. The method includes: providing a wafer having a plurality of first chips; forming a plurality of holes on a first surface of each of the first chips and forming metal posts and solder pads corresponding to the holes so as to form a through silicon via (TSV) structure; forming at least one groove on a second surface of each of the first chips to expose the metal posts of the TSV structure so as to allow at least one second chip to be stacked on the first chip, received in the groove and electrically connected to the metal posts exposed from the groove; filling the groove with an insulating material for encapsulating the second chip; mounting conductive elements on the solder pads of the first surface of each of the first chips and singulating the wafer; and mounting and electrically connecting the stacked first and second chips to a chip carrier via the conductive elements. The wafer, which is not totally thinned but includes a plurality of first chips, severs a carrying purpose during the fabrication process and thereby solves problems, namely a complicated process, high cost, and adhesive layer contamination, facing the prior art that entails repeated use of a carrier board and an adhesive layer for vertically stacking a plurality of chips and mounting the stacked chips on a chip carrier.
摘要:
This invention provides a sensor semiconductor package and a method for fabricating the same. The method includes: mounting on a substrate a sensor chip having a sensor area; electrically connecting the sensor chip and the substrate by means of bonding wires; forming on a transparent member an adhesive layer with an opening corresponding in position to the sensor area; and mounting the transparent member on the substrate via the adhesive layer while heating the substrate, such that the adhesive layer melts, to thereby encapsulate the periphery of the sensor chip and the bonding wires while exposing the sensor area from the adhesive layer. Thus, the sensor area is sealed by the transparent member cooperative with the adhesive layer, making the sensor semiconductor package thus-obtained dam-free, light, thin, and compact, and incurs low process costs. Also, the product reliability is enhanced since the bonding wires are encapsulated by the adhesive layer without severing concern.