Abstract:
A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
Abstract:
A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate.
Abstract:
A light emitting device includes a semiconductor light emitting element; and a light reflective member having a multilayer structure and covering the side faces of the semiconductor light emitting element. The light reflective member includes: a first layer disposed on an inner, semiconductor light emitting element side, the first layer comprising a light-transmissive resin containing a light reflective substance, and a second layer disposed in contact with an outer side of the first layer, the second layer comprising a light-transmissive resin containing the light reflective substance at a lower content than that of the first layer.
Abstract:
A light emitting device includes a mounting board, a light emitting element, first and second light reflecting members, a light transmissive member and a sealing member. The first light reflecting member surrounds a lateral surface of the light emitting element while a top surface of the light emitting element is exposed from the first light reflecting member. The second light reflecting member surrounds an outer periphery of the light emitting element in a plan view. The second light reflecting member is in contact with the first light reflecting member with at least a part of the second light reflecting member being positioned higher than the first light reflecting member. The light transmissive member is disposed inside the second light reflecting member. The light transmissive member includes a wavelength conversion substance. The sealing member covers the first and second light reflecting members and the light transmissive member.
Abstract:
A wiring substrate includes ceramic layers and a conductive member. The ceramic layers have an uppermost ceramic layer and a lowermost ceramic layer. The conductive member includes an upper conductive layer, an internal conductive layer, a lower conductive layer, vias, and a covering layer. The upper conductive layer is disposed on an upper surface of the uppermost ceramic layer. The internal conductive layer is interposed between the ceramic layers. The lower conductive layer is disposed on a lower surface of the lowermost ceramic layer. The vias connect the upper conductive layer, the internal conductive layer, and the lower connective layer. The covering layer covers a portion of the upper conductive layer. The upper conductive layer includes a covered region covered with the covering layer and an element mount region. An upper surface of the element mount region is higher than an upper surface of the covered portion.
Abstract:
A method of manufacturing a light emitting device including: forming a supporting body on a mounting surface of each of semiconductor light emitting elements; arranging the semiconductor light emitting elements to be spaced apart from each other by a predetermined distance; and forming a wavelength conversion layer to continuously cover an upper surface and side surfaces of at least one of the semiconductor light emitting elements. The forming the wavelength conversion layer includes spraying a slurry provided by mixing particles of a wavelength conversion member and a thermosetting resin in a solvent onto the upper surface and the side surfaces of the semiconductor light emitting element, so that a thickness of the wavelength conversion layer at a lower portion of the side surfaces of the supporting body is smaller than the thickness on the upper surface and the side surfaces of the semiconductor light emitting element.
Abstract:
A method of manufacturing a light emitting device includes: providing on a mounting substrate a soluble member which is soluble in a solvent and which has a lower surface, an upper surface opposite to the lower surface in a height direction, and an outer side surface provided between the lower surface and the upper surface, the lower surface contacting the mounting substrate; providing a light blocking member made of resin to cover the outer side surface of the soluble member so that an inner side wall of the light blocking member contacts the outer side surface of the soluble member; removing the soluble member using the solvent to provide a recess surrounded by the inner side wall of the light blocking member; and mounting a light emitting element in the recess.
Abstract:
A wiring substrate includes ceramic layers and a conductive member. The ceramic layers have an uppermost ceramic layer and a lowermost ceramic layer. The conductive member includes an upper conductive layer disposed on an upper surface of the uppermost ceramic layer, an internal conductive layer interposed between the ceramic layers, and a lower conductive layer disposed on a lower surface of the lowermost ceramic layer. The conductive member defines vias electrically connecting the upper conductive layer, the internal conductive layer, and the lower conductive layer. A total number of a first vias connected to the lower conductive layer is larger than a total number of a second vias connected to the upper conductive layer.
Abstract:
A method for manufacturing a light emitting device has: forming a first phosphor layer including a first phosphor that is based on KSF or quantum dots on a light emitting element by a method other than spraying, and forming a second phosphor layer including a second phosphor that is different from the first phosphor on the first phosphor layer by spraying.
Abstract:
Provided is a small and thin light emitting device which has no connection failure, a high life, high performance and good light extraction efficiency. The light emitting device includes a base body comprising a base material having a pair of connection terminals on at least a first main surface, a light emitting element connected to the connection terminals, and a sealing member that seals the light emitting element, wherein the base material has a linear expansion coefficient within ±10 ppm/° C. of the linear expansion coefficient of the light emitting element.