Abstract:
A cascode switch structure includes a group III-V transistor structure having a first current carrying electrode, a second current carrying electrode and a first control electrode. A semiconductor MOSFET device includes a third current carrying electrode electrically connected to the first current carrying electrode, a fourth current carrying electrode electrically connected to the first control electrode, and a second control electrode. A first diode includes a first cathode electrode electrically connected to the second current carrying electrode and a first anode electrode. A second diode includes a second anode electrode electrically connected to the first anode electrode and a second cathode electrode electrically connected to the fourth current carrying electrode. In one embodiment, the group III-V transistor structure, the first diode, and the second diode are integrated within a common substrate.
Abstract:
An electronic device comprising a bidirectional JFET can include a drain/source region; a lightly doped semiconductor layer overlying the drain/source region; a source/drain region overlying the lightly doped semiconductor layer; a trench extending through the source/drain region and into the lightly doped semiconductor layer; a gate electrode of the bidirectional JFET within the trench; and a field electrode within the trench. A process of forming an electronic device can include providing a workpiece including a first doped region and a lightly doped semiconductor layer overlying the first doped region; defining a trench extending into the lightly doped semiconductor layer; forming a gate electrode within the trench, wherein the gate electrode extends to a sidewall of the trench; and forming a field electrode within the trench, wherein a bidirectional JFET includes the first doped region, the lightly doped semiconductor layer, a second doped region, and the gate electrode.
Abstract:
An electronic device can include a bidirectional HEMT. In an aspect, the electronic device can include a pair of switch gate and blocking gate electrodes, wherein the switch gate electrodes are not electrically connected to the blocking gate electrodes, and the first blocking, first switch, second blocking, and second switch gate electrodes are on the same die. In another aspect, the electronic device can include shielding structures having different numbers of laterally extending portions. In a further aspect, the electronic device can include a gate electrode and a shielding structure, wherein a portion of the shielding structure defines an opening overlying the gate electrode.
Abstract:
A cascode switch structure includes a group III-V transistor structure having a first current carrying electrode, a second current carrying electrode and a first control electrode. A semiconductor MOSFET device includes a third current carrying electrode electrically connected to the second current carrying electrode, a fourth current carrying electrode electrically connected to the first control electrode, and a second control electrode. A first diode includes a first cathode electrode electrically connected to the first current carrying electrode and a first anode electrode. A second diode includes a second anode electrode electrically connected to the first anode electrode and a second cathode electrode electrically connected to the fourth current carrying electrode. In one embodiment, the group III-V transistor structure, the first diode, and the second diode are integrated within a common substrate.
Abstract:
In one embodiment, a semiconductor device is formed to include a gate structure extending into a semiconductor material that is underlying a first region of semiconductor material. The gate structure includes a conductor and also a gate insulator that has a first portion positioned between the gate conductor and a first portion of the semiconductor material that underlies the gate conductor. The first portion of the semiconductor material is configured to form a channel region of the transistor which underlies the gate conductor. The gate structure may also include a shield conductor overlying the gate conductor and having a shield insulator between the shield conductor and the gate conductor. The shield insulator may also have a second portion positioned between the shield conductor and a second portion of the gate insulator and a third portion overlying the shield conductor.
Abstract:
A half-bridge circuit can include a high-side HEMT, a high-side switch transistor, a low-side HEMT, and a low-side switch transistor. The die substrates of the HEMTs can be coupled to the sources of their corresponding switch transistors. In another aspect, a packaged electronic device for a half-bridge circuit can have a design that can use shorter connectors that help to reduce parasitic inductance and resistance. In a further aspect, a packaged electronic device for a half-bridge circuit can include more than one connection along the bottom of the package allows less lead connections along the periphery of the packaged electronic device and can allow for a smaller package.
Abstract:
An electronic device can include a bidirectional HEMT. In an aspect, the electronic device can include a pair of switch gate and blocking gate electrodes, wherein the switch gate electrodes are not electrically connected to the blocking gate electrodes, and the first blocking, first switch, second blocking, and second switch gate electrodes are on the same die. In another aspect, the electronic device can include shielding structures having different numbers of laterally extending portions. In a further aspect, the electronic device can include a gate electrode and a shielding structure, wherein a portion of the shielding structure defines an opening overlying the gate electrode.
Abstract:
In one embodiment, a group III-V transistor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A clamping device is integrated with the group III-V transistor structure and is electrically connected to the first current carrying electrode a third electrode to provide a secondary current path during, for example, an electrical stress event.
Abstract:
In one embodiment, a cascode rectifier structure includes a group III-V semiconductor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A rectifier device is integrated with the group III-V semiconductor structure and is electrically connected to the first current carrying electrode and to a third electrode. The control electrode is further electrically connected to the semiconductor substrate and the second current path is generally perpendicular to a primary current path between the first and second current carrying electrodes.
Abstract:
In one embodiment, Group III-nitride materials are used to form a semiconductor device. A fin structure is formed in the Group III-nitride material, and a gate structure, source electrodes and drain electrodes are formed in spaced relationship to the fin structure. The fin structure provides both polar and semi-polar 2DEG regions. In one embodiment, the gate structure is configured to control current flow in the polar 2DEG region. Shield conductor layers are included above the gate structure and in spaced relationship with drain regions of the semiconductor device.