Abstract:
A semiconductor package is provided, which includes: a circuit structure having a first bottom surface and a first top surface opposite to the first bottom surface; at least a semiconductor element disposed on the first top surface of the circuit structure and electrically connected to the circuit structure; an encapsulant formed on the first top surface of the circuit structure to encapsulate the semiconductor element, wherein the encapsulant has a second bottom surface facing the first top surface of the circuit structure and a second top surface opposite to the second bottom surface; and a strengthening layer formed on the second top surface of the encapsulant, or formed between the circuit structure and the encapsulant, or formed on the first bottom surface of the circuit structure, thereby effectively preventing the encapsulant from warping and the semiconductor element from cracking.
Abstract:
The disclosure provides an electronic package and a method of manufacturing the same. The method is characterized by encapsulating an electronic component with a packaging layer and forming on an upper surface of the packaging layer a circuit structure that is electrically connected to the electronic component; and forming a stress-balancing layer on a portion of the lower surface of the packaging layer to balance the stress exerted on the upper and lower surfaces of the packaging layer, thereby reducing the overall package warpage and facilitating the manufacturing process.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: providing a base portion having at least an electronic element embedded therein and at least a positioning unit formed around a periphery of the electronic element, wherein the positioning unit protrudes from or is flush with a surface of the base portion; and forming at least a circuit layer on the surface of the base portion and the electronic element. The circuit layer is aligned and connected to the electronic element through the positioning unit.
Abstract:
A method for fabricating a substrate having an electrical interconnection structure is provided, which includes the steps of: providing a substrate body having a plurality of conductive pads and first and second passivation layers sequentially formed on the substrate body and exposing the conductive pads; forming a seed layer on the second passivation layer and the conductive pads; forming a first metal layer on each of the conductive pads, wherein the first metal layer is embedded in the first and second passivation layers without being protruded from the second passivation layer; and forming on the first metal layer a second metal layer protruded from the second passivation layer. As such, when the seed layer on the second passivation layer is removed by etching using an etchant, the etchant will not erode the first metal layer, thereby preventing an undercut structure from being formed underneath the second metal layer.
Abstract:
The present invention provides a semiconductor package and a method of fabricating the same, including: placing in a groove of a carrier a semiconductor element having opposing active and non-active surfaces, and side surfaces abutting the active surface and the non-active surface; applying an adhesive material in the groove and around a periphery of the side surfaces of the semiconductor element; forming a dielectric layer on the adhesive material and the active surface of the semiconductor element; forming on the dielectric layer a circuit layer electrically connected to the semiconductor element; and removing a first portion of the carrier below the groove to keep a second portion of the carrier on a side wall of the groove intact for the second portion to function as a supporting member. The present invention does not require formation of a silicon interposer, and therefore the overall cost of a final product is much reduced.
Abstract:
An inner-layer heat-dissipating board and a multi-chip stack package structure having the inner-layer heat-dissipating board are disclosed. The inner-layer heat-dissipating board includes a metal board body formed with a plurality of penetrating conductive through holes each comprising a plurality of nano wires and an oxidative block having nano apertures filled with the nano wires. The multi-chip stack package structure includes a first chip and an electronic component respectively disposed on the inner-layer heat-dissipating board to thereby facilitate heat dissipation in the multi-chip stack structure as well as increase the overall package rigidity.
Abstract:
A method for fabricating a substrate having an electrical interconnection structure is provided, which includes the steps of: providing a substrate body having a plurality of conductive pads and first and second passivation layers sequentially formed on the substrate body and exposing the conductive pads; forming a seed layer on the second passivation layer and the conductive pads; forming a first metal layer on each of the conductive pads, wherein the first metal layer is embedded in the first and second passivation layers without being protruded from the second passivation layer; and forming on the first metal layer a second metal layer protruded from the second passivation layer. As such, when the seed layer on the second passivation layer is removed by etching using an etchant, the etchant will not erode the first metal layer, thereby preventing an undercut structure from being formed underneath the second metal layer.
Abstract:
A semiconductor package is provided, which includes: a circuit structure having a first bottom surface and a first top surface opposite to the first bottom surface; at least a semiconductor element disposed on the first top surface of the circuit structure and electrically connected to the circuit structure; an encapsulant formed on the first top surface of the circuit structure to encapsulate the semiconductor element, wherein the encapsulant has a second bottom surface facing the first top surface of the circuit structure and a second top surface opposite to the second bottom surface; and a strengthening layer formed on the second top surface of the encapsulant, or formed between the circuit structure and the encapsulant, or formed on the first bottom surface of the circuit structure, thereby effectively preventing the encapsulant from warping and the semiconductor element from cracking.
Abstract:
A method for fabricating a package structure is provided, which includes the steps of: providing a base portion having at least an electronic element embedded therein and at least a positioning unit formed around a periphery of the electronic element, wherein the positioning unit protrudes from or is flush with a surface of the base portion; and forming at least a circuit layer on the surface of the base portion and the electronic element. The circuit layer is aligned and connected to the electronic element through the positioning unit.
Abstract:
A method for fabricating a substrate having an electrical interconnection structure is provided, which includes the steps of: providing a substrate body having a plurality of conductive pads and first and second passivation layers sequentially formed on the substrate body and exposing the conductive pads; forming a seed layer on the second passivation layer and the conductive pads; forming a first metal layer on each of the conductive pads, wherein the first metal layer is embedded in the first and second passivation layers without being protruded from the second passivation layer; and forming on the first metal layer a second metal layer protruded from the second passivation layer. As such, when the seed layer on the second passivation layer is removed by etching using an etchant, the etchant will not erode the first metal layer, thereby preventing an undercut structure from being formed underneath the second metal layer.