Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
Abstract:
A semiconductor device is provided, including: a substrate having opposing first and second surfaces and a plurality of conductive vias passing through the first and second surfaces; an insulating layer formed on the first surface of the substrate and exposing end portions of the conductive vias therefrom; and a buffer layer formed on the insulating layer at peripheries of the end portions of the conductive vias, thereby increasing product reliability and good yield.
Abstract:
A package structure includes a micro-electromechanical element having a plurality of electrical contacts; a package layer enclosing the micro-electromechanical element and the electrical contacts, with a bottom surface of the micro-electromechanical element exposed from a lower surface of the package layer; a plurality of bonding wires embedded in the package layer, each of the bonding wires having one end connected to one of the electrical contacts, and the other end exposed from the lower surface of the package layer; and a build-up layer structure provided on the lower surface of the package layer, the build-up layer including at least one dielectric layer and a plurality of conductive blind vias formed in the dielectric layer and electrically connected to one ends of the bonding wires. The package structure is easier to accurately control the location of an external electrical contact, and the compatibility of the manufacturing procedures is high.
Abstract:
A fabrication method of a semiconductor package includes the steps of: providing a carrier having a concave portion and a releasing layer formed on a surface thereof; disposing a chip on the releasing layer in the concave portion; forming an encapsulant on the chip and the releasing layer; removing the releasing layer and the carrier; and forming a circuit structure on the encapsulant and the chip. The design of the concave portion facilitates alignment of the chip to prevent it from displacement, thereby improving the product reliability. A semiconductor package fabricated by the fabrication method is also provided.
Abstract:
A fabrication method of a semiconductor package includes the steps of: forming a release layer on a carrier having concave portions; disposing chips on the release layer in the concave portions of the carrier; forming an encapsulant on the chips and the release layer; forming a bonding layer on the encapsulant; removing the release layer and the carrier so as to expose the active surfaces of the chips; and forming a circuit structure on the encapsulant and the chips. Since the release layer is only slightly adhesive to the chips and the encapsulant, the present invention avoids warpage of the overall structure during a thermal cycle caused by incompatible CTEs.
Abstract:
The present invention provides a semiconductor package and a method of fabricating the same, including: placing in a groove of a carrier a semiconductor element having opposing active and non-active surfaces, and side surfaces abutting the active surface and the non-active surface; applying an adhesive material in the groove and around a periphery of the side surfaces of the semiconductor element; forming a dielectric layer on the adhesive material and the active surface of the semiconductor element; forming on the dielectric layer a circuit layer electrically connected to the semiconductor element; and removing a first portion of the carrier below the groove to keep a second portion of the carrier on a side wall of the groove intact for the second portion to function as a supporting member. The present invention does not require formation of a silicon interposer, and therefore the overall cost of a final product is much reduced.
Abstract:
A package structure is provided, which includes: a wafer having a surface with a groove, a thin film closing an open end of the groove and electrical contacts; a chip having a surface with a conductive layer and an opposite surface with a concave portion and a seal ring located at a periphery of the concave portion, the chip being disposed on the wafer with the seal ring surrounding the thin film and the electrical contacts located outside the seal ring; an encapsulant formed on the wafer for encapsulating the chip and the electrical contacts; a plurality of sub-conductive wires embedded in the encapsulant with one ends exposed from a top surface of the encapsulant and the other ends in electrical connection with the electrical contacts; and a through hole penetrating the wafer and communicating with the concave portion, thereby reducing the fabrication cost and size of the package structure.
Abstract:
A semiconductor package includes: a dielectric layer having opposite first and second surfaces; a semiconductor chip embedded in the dielectric layer and having a plurality of electrode pads; a plurality of first metal posts disposed on the electrode pads of the semiconductor chip, respectively, such that top ends of the first metal posts are exposed from the first surface; at least a second metal post penetrating the dielectric layer such that two opposite ends of the second metal post are exposed from the first and second surfaces, respectively; a first circuit layer formed on the first surface for electrically connecting the first and second metal posts; and a second circuit layer formed on the second surface for electrically connecting the second metal post. The semiconductor package dispenses with conventional laser ablation and electroplating processes for forming conductive posts in a molding compound, thereby saving fabrication time and cost.
Abstract:
A package structure is provided, which includes: a wafer having a surface with a groove, a thin film closing an open end of the groove and electrical contacts; a chip having a surface with a conductive layer and an opposite surface with a concave portion and a seal ring located at a periphery of the concave portion, the chip being disposed on the wafer with the seal ring surrounding the thin film and the electrical contacts located outside the seal ring; an encapsulant formed on the wafer for encapsulating the chip and the electrical contacts; a plurality of sub-conductive wires embedded in the encapsulant with one ends exposed from a top surface of the encapsulant and the other ends in electrical connection with the electrical contacts; and a through hole penetrating the wafer and communicating with the concave portion, thereby reducing the fabrication cost and size of the package structure.
Abstract:
A method of fabricating a semiconductor package is provided, including: providing a carrier having a plurality of chip areas defined thereon, and forming a connection unit on each of the chip areas; disposing a semiconductor element on each of the connection units; forming an insulating layer on the carrier and the semiconductor elements; and forming on the insulating layer a circuit layer electrically connected to the semiconductor elements. Since being formed only on the chip areas instead of on the overall carrier as in the prior art, the connection units are prevented from expanding or contracting during temperature cycle, thereby avoiding positional deviations of the semiconductor elements.