Abstract:
A set (50) of laser pulses (52) is employed to sever a conductive link (22) in a memory or other IC chip. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.1 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each link (22). Conventional IR wavelengths or their harmonics can be employed.
Abstract:
A set (50) of laser pulses (52) is employed to sever a conductive link (22) in a memory or other IC chip. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.1 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each link (22). Conventional IR wavelengths or their harmonics can be employed.
Abstract:
A set (50) of one or more laser pulses (52) is employed to remove passivation layer (44) over a conductive link (22). The link (22) can subsequently be removed by a different process such as chemical etching. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.05 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly material removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each target area (51). Conventional wavelengths in the IR range or their harmonics in the green or UV range can be employed.
Abstract:
A method and laser system effect rapid removal of material from a workpiece by applying heating energy in the form of a light beam to a target location on the workpiece to elevate its temperature while maintaining its dimensional stability. When the target portion of the workpiece is heated, a laser beam is directed for incidence on the heated target location. The laser beam preferably has a processing laser output that is appropriate to effect removal of the target material from the workpiece. The combined incidence of the processing laser output and the heating energy on the target location enables the processing laser output to remove a portion of the target material at a material removal rate that is higher than the material removal rate achievable when the target material is not heated.
Abstract:
A method of forming a scribe line having a sharp snap line entails directing a UV laser beam along a ceramic or ceramic-like substrate such that a portion of the thickness of the substrate is removed. The UV laser beam forms a scribe line in the substrate without appreciable substrate melting so that a clearly defined snap line forms a region of high stress concentration extending into the thickness of the substrate. Consequently, multiple depthwise cracks propagate into the thickness of the substrate in the region of high stress concentration in response to a breakage force applied to either side of the scribe line to effect clean fracture of the substrate into separate circuit components. The formation of this region facilitates higher precision fracture of the substrate while maintaining the integrity of the interior structure of each component during and after application of the breakage force.
Abstract:
A laser system and processing method exploits the absorption contrast between the materials from which a film and an underlying substrate (26) are made to effectively remove the film from the substrate. Laser output in a wavelength range of 1.2 to 3 .mu.m optimizes the absorption contrast between many resistive or conductive film materials (e.g., metals, metal alloys, polysilicon, polycides, or disilicides) and integrated circuit substrates (e.g., silicon, gallium arsenide, or other semi-conductors) and permits the use of laser output in a wider range of energy or power levels and pulse widths, without risking damage to the substrates or adjacent circuit structures. Existing film processing laser systems can be readily modified to operate in the 1.2 to 3 .mu.m range. The laser system and processing method also exploit a wavelength range in which devices, including any semiconductor material-based devices affected by conventional laser wavelengths and devices having light-sensitive or photo-electronic portions integrated into their circuits, can be effectively functionally trimmed without inducing malfunctions or function shifts in the processed devices, thus allowing faster functional laser processing, easing geometric restrictions on circuit design, and facilitating production of denser and smaller devices.
Abstract:
A laser system and processing method exploits the absorption contrast between the materials from which a link (12) and an underlying substrate (22) are made to effectively remove the link from the substrate. Laser output in a wavelength range of 1.2 to 3 .mu.m (30) optimizes the absorption contrast between many materials (e.g., metals, polysilicon, polycides, or disilicides) and integrated circuit substrates (e.g., silicon, gallium arsenide, or other semiconductors) and permits the use of laser output in a wider range of energy or power levels, pulse widths, and spot sizes without risking damage to the substrates or adjacent circuit structures. Existing link processing laser systems can be readily modified to operate in the 1.2 to 3 .mu.m range.
Abstract:
A laser system and processing method exploits the absorption contrast between the materials from which a link (12) and an underlying substrate (22) are made to effectively remove the link from the substrate. Laser output in a wavelength range of 1.2 to 2.0 .mu.m (30) optimizes the absorption contrast between many high conductivity materials (e.g., metals) and silicon substrates and permits the use of laser output in a wider range of energy or power levels, pulse widths, without risking damage to the silicon substrates or adjacent circuit structures. Existing link processing laser systems can be readily modified to operate in the 1.2 to 3.0 .mu.m range.
Abstract:
Processing workpieces such as semiconductor wafers or other materials with a laser includes selecting a target to process that corresponds to a target class associated with a predefined temporal pulse profile. The temporal pulse profile includes a first portion that defines a first time duration, and a second portion that defines a second time duration. A method includes generating a laser pulse based on laser system input parameters configured to shape the laser pulse according to the temporal pulse profile, detecting the generated laser pulse, comparing the generated laser pulse to the temporal pulse profile, and adjusting the laser system input parameters based on the comparison.
Abstract:
A programmable tailored laser pulse generator including a pulsed seed laser source, a laser amplifier, and an optical power amplifier produces high power tailored laser pulses shaped in response to a programmable analog tailored pulse signal applied to a seed laser (first embodiment) or an external modulator of continuous-wave seed laser output (second embodiment). The programmable analog tailored pulse signal is generated by combining multiple individually programmable analog pulses generated by a multi-channel signal generator. A bias applied to the pulsed seed laser source generates pre-lasing prior to producing a tailored laser pulse so that the seed laser source spectral line and line width stabilize within a narrow gain line width of a solid-state laser amplifier, thereby to impart pulse peak stability of the laser output. The tailored laser pulse generator allows for generating harmonics at shorter wavelengths and provides an economical, reliable laser source for a variety of micromachining applications.