Abstract:
There is provided an electron microscope capable of easily achieving power saving. The electron microscope (100) includes a controller (60) for switching the mode of operation of the microscope from a first mode where electron lenses (12, 14, 18, 20) are activated to a second mode where the electron lenses (12, 14, 18, 20) are not activated. During this operation for making a switch from the first mode to the second mode, the controller (60) performs the steps of: closing a first vacuum gate valve (50), opening a second vacuum gate valve (52), and vacuum pumping the interior of the electron optical column (2) of the microscope by the second vacuum pumping unit (40); then controlling a heating section (26) to heat an adsorptive member (242); then opening the first vacuum gate valve (50), closing the second vacuum gate valve (52), and vacuum pumping the interior of the electron optical column (2) by the first vacuum pumping unit (30); and turning off the electron lenses (12, 14, 18, 20).
Abstract:
The present invention relates to modulating an irradiation condition of a charged particle beam at high speed and detecting a signal in synchronization with a modulation period for the purpose of extracting a signal arising from a certain charged particle beam when a sample is irradiated with a plurality of charged particle beams simultaneously or, for example, for the purpose of separating a secondary electron signal arising from ion beam irradiation and a secondary electron signal arising from electron beam irradiation in an FIB-SEM system. The present invention further relates to dispersing light emitted from two or more kinds of scintillators having different light emitting properties, detecting each signal strength, and processing a signal on the basis of a ratio of first signal strength when the sample is irradiated with a first charged particle beam alone to second signal strength when the sample is irradiated with a second charged particle beam alone, the ratio being set by a mechanism. The present invention enables extraction of only a signal arising from a desired charged particle beam even when the sample is irradiated with the plurality of charged particle beams simultaneously. The SEM observation can be performed in the middle of the FIB processing using the secondary electron in the FIB-SEM system, for example.
Abstract:
There is provided a charged particle beam system in which a detector can be placed in an appropriate analysis position. The charged particle beam system (100) includes: a charged particle source (11) for producing charged particles; a sample holder (20) for holding a sample (S); a detector (40) for detecting, in the analysis position, a signal produced from the sample (S) by impingement of the charged particles on the sample (S); a drive mechanism (42) for moving the detector (40) into the analysis position; and a controller (52) for controlling the drive mechanism (42). The controller (52) performs the steps of: obtaining information about the type of the sample holder (20); determining the analysis position on the basis of the obtained information about the type of the sample holder (20); and controlling the drive mechanism (42) to move the detector (40) into the determined analysis position.
Abstract:
A focused ion beam apparatus includes an ion source that emits an ion beam, an extraction electrode that extracts ions from a tip end of an emitter of the ion source, and a first lens electrode that configures a condenser lens by a potential difference with the extraction electrode, the condenser lens focusing the ions extracted by the extraction electrode, in which a strong lens action is generated between the extraction electrode and the first lens electrode so as to focus all ions extracted from the ion source to pass through a hole of the condenser lens including the first lens electrode.
Abstract:
A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
Abstract:
Pattern critical dimension measurement equipment includes an electron source configured to generate a primary electron beam, a deflector configured to deflect the primary electron beam emitted from the electron source, a focusing lens configured to focus the primary electron beam deflected by the deflector, a decelerator configured to decelerate the primary electron beam that irradiates the sample, a first detector located between the electron source and the focusing lens, the first detector being configured to detect electrons at part of azimuths of electrons generated from the sample upon irradiation of the sample with the primary electron beam, and a second detector located between the electron source and the first detector, the second detector being configured to detect electrons at substantially all azimuths of the electrons generated from the sample.
Abstract:
The present invention provides a composite charged particle beam device which is provided with two or more charged particle beam columns and enables high-resolution observation while a sample is placed at the position of a cross point. The present invention has the following configuration. A composite charged particle beam device is provided with a plurality of charged particle beam columns (101a, 102a), and is characterized in that a sample (103) is disposed at the position of an intersection point (171) where the optical axes of the plurality of columns intersect, a component (408a, 408b) that forms the tip of an objective lens of the charged particle beam column (102a) is detachable, and by replacing the component (408a, 408b), the distance between the intersection point (171) and the tip of the charge particle beam column can be changed.
Abstract:
The present invention relates to a lens-less Foucault method wherein a transmission electron microscope objective lens (5) is turned off, an electron beam crossover (11, 13) is matched with a selected area aperture (65), and the focal distance of a first imaging lens (61) can be changed to enable switching between a sample image observation mode and a sample diffraction pattern observation mode, characterized in that a deflector (81) is disposed in a stage following the first imaging lens (61), and conditions for an irradiating optical system (4) can be fixed after conditions for the imaging optical system have been determined. This allows a lens-less Foucault method to be implemented in a common general-use transmission electron microscope with no magnetic shielding lens equipped, without burdening the operator.
Abstract:
An electron microscope has a large depth of focus in comparison with an optical microscope. Thus, information is superimposed on one image in the direction of depth. Therefore, it is necessary to accurately specify the three-dimensional position and density of a structure in a specimen so as to observe the three-dimensional structure of the interior of the specimen by using the electron microscope. Furthermore, a specimen that is observed with the optical microscope on a slide glass is not put into a TEM device of the related art. Thus, performing three-dimensional internal structure observation with the electron microscope on a location that is observed with the optical microscope requires very cumbersome preparation of the specimen. By controlling a vector parameter that defines the interrelationship between a primary charged particle beam and the specimen and by irradiation with the primary charged particle beam with a plurality of different vector parameters, images of transmitted charged particles of the specimen that correspond to each of the vector parameters are obtained. Irradiation with the primary charged particle beam is performed on the specimen that is arranged either directly or through a predetermined member on a detector which detects charged particles transmitted through or scattered by the interior of the specimen.
Abstract:
A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first regularity.