Abstract:
A method of manufacturing a printed circuit board having a metal bump, including: forming a recess for creation of the metal bump on a metal carrier; forming a barrier layer on the metal carrier including the recess; forming an upper circuit layer on the barrier layer, the upper circuit layer including the metal bump charged in the recess and a circuit pattern; preparing an insulating layer, and transferring the upper circuit layer to the insulating layer; and removing the metal carrier and the barrier layer.
Abstract:
A method of manufacturing a circuit board that includes: forming a conductive relievo pattern, including a first plating layer, a first metal layer, and a second plating layer stacked sequentially in correspondence with a first circuit pattern, on a seed layer stacked on a carrier; stacking and pressing together the carrier and an insulator, such that a surface of the carrier having the conductive relievo pattern faces the insulator; transcribing the conductive relievo pattern into the insulator by removing the carrier; forming a conduction pattern, including a third plating layer and a second metal layer stacked sequentially in correspondence with a second circuit pattern, on the surface of the insulator having the conductive relievo pattern transcribed; removing the first plating layer and seed layer; and removing the first and second metal layers, can provide a circuit board that has high-density circuit patterns without an increased amount of insulator.
Abstract:
Provided is a Mach-Zehnder modulator. The Mach-Zehnder modulator comprises an input wave guide and an output wave guide arranged on a substrate, a first branch wave guide and a second branch wave guide connected in parallel between the input and output wave guides, and a connecting region configured to connect the first branch wave guide and the second branch wave guide. Each of the first and second branch wave guides comprises first doped regions doped with a first dopant and second doped regions doped with a second dopant having different conductivity from the first dopant, and the connecting region is doped with the first dopant and arranged between the first regions of the first and second branch wave guides.
Abstract:
A method of manufacturing a metal interconnection of a semiconductor device includes forming a base layer with at least one groove, the at least one groove having an open upper portion, forming a first metal layer in the at least one groove, forming a seed metal layer on the first metal layer in the at least one groove, the seed metal layer being only on a bottom surface of the at least one groove, and forming a metal pattern grown from the seed metal layer to fill the at least one grove.
Abstract:
Provided is an electro-optic device. Sine the electro-optic device includes a plurality of first conductive type semiconductor layers and a plurality of depletion layers formed by a third semiconductor disposed between the plurality of first conductive type semiconductor layers, an electro-optic device optimized for a high speed and low power consumption can be provided.
Abstract:
An electro-optic device is provided. The electro-optic device includes a junction layer disposed between a first conductivity type semiconductor layer and a second conductivity type semiconductor layer to which a reverse vias voltage is applied. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer have an about 2 to 4-time doping concentration difference therebetween, thus making it possible to provide the electro-optic device optimized for high speed, low power consumption and high integration.
Abstract:
Provided is a semiconductor integrated circuit. The semiconductor integrated circuit includes a semiconductor pattern disposed on a substrate and including an optical waveguide part and a pair of recessed portions. The optical waveguide part has a thickness ranging from about 0.05 m to about 0.5 μm. The recessed portions are disposed on both sides of the optical waveguide part and have a thinner thickness than the optical waveguide part. A first doped region and a second doped region are disposed in the recessed portions, respectively. The first and second doped regions are doped with a first conductive type dopant and a second conductive type dopant, respectively. An intrinsic region is formed in at least the optical waveguide part to contact the first and second doped regions.
Abstract:
Provided is an optical device having an edge effect with improved phase shift and propagation loss of light without decreasing the dynamic characteristics of the optical device. The optical device includes a first semiconductor layer which is doped with a first type of conductive impurities, and has a recessed groove in an upper portion thereof; a gate insulating layer covering the groove and a portion of the first semiconductor layer; and a second semiconductor layer which covers an upper surface of the gate insulating layer and is doped with a second type of conductive impurities opposite to the first type of conductive impurities.
Abstract:
Provided are semiconductor opto-electronic integrated circuits and methods of forming the same. The semiconductor opto-electronic integrated circuit includes: an optical waveguide disposed on a substrate and including an input terminal and an output terminal; an optical grating formed on the optical waveguide; and an optical active device disposed on the optical grating and receiving an optical signal from the optical waveguide through the optical grating to modulate the optical signal.
Abstract:
A multipurpose supportable cover having improved portability and usability, the cover including a front cover 20, a filler page portion 30, and a rear cover 40 that are bound by a binder 10, wherein a first iron piece 21 is installed on a lower end of the front cover 20, the rear cover 40 includes a main rear cover 42, a first sub-rear cover 43, and a second sub-rear cover 44 that are partitioned by first and second folding lines 40a and 40b, and a magnet piece 41 to be attached to the first iron piece 21 is installed on a lower end of the second sub-rear cover 44.