Abstract:
A method for fabricating a semiconductor device including GaN (gallium nitride) that composes a semiconductor layer and includes forming a gate insulating film, in which at least one film selected from the group of a SiO2 film and an Al2O3 film is formed on a nitride layer containing GaN by using microwave plasma and the formed film is used as at least a part of the gate insulating film.
Abstract translation:一种制造半导体器件的方法,该半导体器件包括构成半导体层并包括形成栅极绝缘膜的GaN(氮化镓),其中在氮化物层上形成选自SiO 2膜和Al 2 O 3膜中的至少一种膜 通过使用微波等离子体形成含GaN的GaN,并且将形成的膜用作栅极绝缘膜的至少一部分。
Abstract:
The amorphous silicon film formation method includes forming a seed layer on the surface of a base by heating the base and flowing aminosilane-based gas onto the heated base; and forming an amorphous silicon film on the seed layer by heating the base, supplying silane-based gas containing no amino group onto the seed layer on the surface of the heated base, and thermally decomposing the silane-based gas containing no amino group.
Abstract:
A disclosed film deposition method includes steps of loading plural substrates each of which includes a pattern including a concave part in a reaction chamber in the form of shelves; depositing a silicon oxide film on the plural substrates by supplying a silicon-containing gas and an oxygen-containing gas to the reaction chamber; etching the silicon oxide film deposited on the plural substrates in the step of depositing by supplying a fluorine-containing gas and an ammonia gas to the reaction chamber; and alternately repeating the step of depositing and the step of etching.
Abstract:
A film formation apparatus includes a gas supply mechanism for supplying an aminosilane-based gas, and a silane-based gas that does not include an amino group. Processes of forming a seed layer on a surface of the insulation film having the opening reaching the conductive substance and on a bottom surface of the opening by supplying the aminosilane-based gas into the process chamber, and forming a silicon film on the seed layer by supplying the silane-based gas that does not include the amino group into the process chamber, are sequentially performed in the process chamber.
Abstract:
A method of forming a silicon nitride film on the surface of an object to be processed, the method including forming a seed layer functioning as a seed of the silicon nitride film on the surface of the object to be processed by using at least an aminosilane-based gas, prior to forming the silicon nitride film on the surface of the object to be processed.
Abstract:
A thin film formation method to form a silicon film containing an impurity on a surface of an object to be processed in a process chamber that allows vacuum exhaust includes alternately and repeatedly performing a first gas supply process in which a silane-based gas composed of silicon and hydrogen is supplied into the process chamber in a state that the silane-based gas is adsorbed onto the surface of the object to be processed and a second gas supply process in which an impurity-containing gas is supplied into the process chamber, to form an amorphous silicon film containing an impurity. Accordingly, an amorphous silicon film containing an impurity having good filling characteristics can be formed even at a relatively low temperature.
Abstract:
A method for using a film formation apparatus for a semiconductor process to form a thin film on a target substrate while supplying a film formation reactive gas from a first nozzle inside a reaction chamber includes performing a cleaning process to remove a by-product film deposited inside the reaction chamber and the first nozzle, in a state where the reaction chamber does not accommodate the target substrate. The cleaning process includes, in order, an etching step of supplying a cleaning reactive gas for etching the by-product film into the reaction chamber, and activating the cleaning reactive gas, thereby etching the by-product film, and an exhaust step of stopping supply of the cleaning reactive gas and exhausting gas from inside the reaction chamber. The etching step is arranged to use conditions that cause the cleaning reactive gas supplied in the reaction chamber to flow into the first nozzle.
Abstract:
A film formation apparatus for a semiconductor process includes a process gas supply system configured to supply process gases. The process gas supply system includes a gas mixture tank configured to mix first and third process gases to form a mixture gas, a mixture gas supply line configured to supply the mixture gas from the gas mixture tank to a process field, a second process gas supply circuit having a second process gas supply line configured to supply a second process gas to the process field without passing through the gas mixture tank, and first and second switching valves disposed on the mixture gas supply line and the second process gas supply line, respectively. A control section controls the first and second switching valves to be opened and closed so as to alternately and pulse-wise supply the mixture gas and the second process gas to the process field.
Abstract:
A method for forming an SiCN film on target substrates placed in a process field inside a process container repeats a unit cycle a plurality of times to laminate thin films respectively formed, thereby forming the SiCN film with a predetermined thickness. The unit cycle includes performing and suspending supply of a silicon source gas, a nitriding gas, and a carbon hydride gas respectively from first, second, and third gas distribution nozzles to the process field. The unit cycle does not turn any one of the gases into plasma but heats the process field to a set temperature of 300 to 700° C. with the supply of the carbon hydride gas performed for a time period in total longer than that of the supply of the silicon source gas, so as to provide the SiCN film with a carbon concentration of 15.2% to 28.5%.
Abstract:
A film formation method includes setting a target object at a temperature of 150 to 550° C., the target object being placed inside the process container configured to hold a vacuum state therein, and then, repeating a cycle alternately including a first supply step and a second supply step a plurality of times to form a silicon nitride film on the target object. The first supply step is a step of supplying monochlorosilane gas as an Si source into the process container while setting the process container at a pressure of 66.65 to 666.5 Pa therein. The second supply step is a step of supplying a nitrogen-containing gas as a nitriding gas into the process container.