摘要:
A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow≦xhigh≦0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
摘要翻译:发光器件包括具有由掺杂有p型掺杂剂的Al x Ga Ga x Ga x Ga x Ga N交替层和掺杂有p型掺杂剂的Al x O x Ga 1-x low N形成的短周期超晶格(SPSL)的p侧异质结构,其中xlow≤xhigh≤ 0.9。 SPSL的每个层具有小于或等于约六个双层AlGaN的厚度。
摘要:
A device includes one or more reflector components. Each reflector component comprises layer pairs of epitaxially grown reflective layers and layers of a non-epitaxial material, such as air. Vias extend through at least some of the layers of the reflector components. The device may include a light emitting layer.
摘要:
Surface emitting laser structures that include a partially reflecting element disposed in the laser optical cavity are disclosed. A vertical external cavity surface emitting laser (VECSEL) structure includes a pump source configured to emit radiation at a pump wavelength, λpump, an external out-coupling reflector, a distributed Bragg reflector (DBR,) and an active region arranged between the DBR and the out-coupling reflector. The active region is configured to emit radiation at a lasing wavelength, λlase. The VECSEL structure also includes partially reflecting element (PRE) arranged between the gain element and the external out-coupling reflector. The PRE has reflectivity of between about 30% and about 70% for the radiation at the lasing wavelength and reflectivity of between about 30% and about 70% for the radiation at the pump wavelength.
摘要:
One or more layers are epitaxially grown on a bulk crystalline AlN substrate. The epitaxial layers include a surface which is the initial surface of epitaxial growth of the epitaxial layers. The AlN substrate is substantially removed over a majority of the initial surface of epitaxial growth.
摘要:
A method and system for using spatially modulated excitation/emission and relative movement between a particle (cell, molecule, aerosol, . . . ) and an excitation/emission pattern are provided. In at least one form, an interference pattern of the excitation light with submicron periodicity perpendicular to the particle flow is used. As the particle moves along the pattern, emission is modulated according to the speed of the particle and the periodicity of the stripe pattern. A single detector, which records the emission over a couple of stripes, can be used. The signal is recorded with a fast detector read-out in order to capture the “blinking” of the particles while they are moving through the excitation pattern. This concept enables light detection with high signal-to-noise ratio and high spatial resolution without the need of expensive and bulky optics.
摘要:
A device includes one or more reflector components. Each reflector component comprises layer pairs of epitaxially grown reflective layers and layers of a non-epitaxial material, such as air. Vias extend through at least some of the layers of the reflector components. The device may include a light emitting layer.
摘要:
In response to objects having relative motion within an encoding/sensing region relative to an encoder/sensor that, e.g., photosenses emanating light or performs impedance-based sensing, sensing results can indicate sensed time-varying waveforms with information about the objects, about their relative motion, about excitation characteristics, about environmental characteristics, and so forth. An encoder/sensor can include, for example, a non-periodic arrangement of sensing elements; a longitudinal sequence of sensing elements with a combined sensing pattern that approximates a superposition or scaled superposition of simpler sensing patterns; and/or IC-implemented sensing elements that include photosensing arrays on ICs and readout/combine circuitry that reads out photosensed quantities from cells in groups in accordance with cell-group sensing patterns and combines the readout photosensed quantities to obtain the sensing results. Objects can move fluidically as in flow cytometry, through scanning movement as in document scanning, or in other ways.
摘要:
An optical semiconductor device such as a light emitting diode is formed on a transparent substrate having formed thereon a template layer, such as AlN, which is transparent to the wavelength of emission of the optical device. A mixed alloy defect redirection region is provided over the template layer such that the composition of the defect redirection region approaches or matches the composition of the regions contiguous thereto. For example, the Al content of the defect redirection region may be tailored to provide a stepped or gradual Aluminum content from template to active layer. Strain-induced cracking and defect density are reduced or eliminated.
摘要:
A semiconductor light emitting device includes a pump light source, a gain structure, and an out-coupling mirror. The gain structure is comprised of InGaN layers that have resonant excitation absorption at the pump wavelength. Light from the pump light source causes the gain structure to emit light, which is reflected by the out-coupling mirror back to the gain structure. A distributed Bragg reflector causes internal reflection within the gain structure. The out-coupling mirror permits light having sufficient energy to pass therethrough for use external to the device. A frequency doubling structure may be disposed between the gain structure and the out-coupling mirror. Output wavelengths in the deep-UV spectrum may be achieved.
摘要:
An implantable product includes an optical cavity structure with first and second parts, each of which can operate as an optical cavity. The first part includes a container with at least one opening through which bodily fluid can transfer between the container's interior and exterior when the product is implanted in a body. The second part includes a container that is closed and contains a reference fluid. The implantable product can also include one or both of a light source component and a photosensing component. Photosensed quantities from the first part's output light can be adjusted based on photosensed quantities from the second part's output light. Both parts can have their light interface surfaces aligned so that they both receive input light from a light source component and both provide output light to a photosensing component.