Abstract:
A process for assembling a Chip-On-Lead packaged semiconductor device includes the steps of: mounting and sawing a wafer to provide individual semiconductor dies; performing a first molding operation on a lead frame; depositing epoxy on the lead frame via a screen printing process; attaching one of the singulated dies on the lead frame with the epoxy, where the die attach is done at room temperature; and curing the epoxy in an oven. Throughput improvements may be ascribed to not including a hot die attach process. An optional plasma cleaning step may be performed, which greatly improves wire bonding quality and a second molding quality. In addition, since a first molding operation is performed before the formation of epoxy to avoid the problem of the epoxy hanging in the air, the delamination risk between the epoxy and the die is avoided.
Abstract:
A lead frame having a coating of organic compounds on its lead fingers prevents tin and flux from contaminating the lead fingers after die attach. The coating is removed prior to wire bonding. The coating allows for reliable second bonds (bond between wires and lead fingers) to be formed, decreasing the likelihood of non-stick and improving wire peel strength.
Abstract:
An apparatus and method steer a light through a lens into a receiving port via a steering device. The steering device is located between the lens and a light source. A feedback mechanism adjusts the steering device to correct for aberration.
Abstract:
A bond wire feed system has a wire tensioning unit with a chamber that has a wire inlet aperture and a wire outlet aperture. The wire inlet and outlet apertures have centers that are aligned with a central axis of the chamber. A clamp is positioned to receive a bond wire provided from the wire outlet aperture. The clamp has at least two jaws movable relative to each other and arranged to grip the wire to align a central axis of the wire with the central axis of the chamber. The jaws are also movable along the central axis of the wire in order to pull the wire through the wire tensioning unit.
Abstract:
A bond wire feed system has a wire tensioning unit with a chamber that has a wire inlet aperture and a wire outlet aperture. The wire inlet and outlet apertures have centers that are aligned with a central axis of the chamber. A clamp is positioned to receive a bond wire provided from the wire outlet aperture. The clamp has at least two jaws movable relative to each other and arranged to grip the wire to align a central axis of the wire with the central axis of the chamber. The jaws are also movable along the central axis of the wire in order to pull the wire through the wire tensioning unit.
Abstract:
A semiconductor die is packaged by providing a die assembly that includes a semiconductor die with an active surface and an opposite mounting surface with an attached thermally conductive substrate. The die assembly is mounted on a first surface of a lead frame die flag so that the thermally conductive substrate is sandwiched between the die flag and the semiconductor die. Bonding pads of the die are electrically connected with bond wires to lead frame lead fingers. A mold compound then encapsulates the semiconductor die, bond wires, and thermally conductive substrate. A second surface of the die flag is exposed through the mold compound.
Abstract:
Bending members having slanted faces to engage folded edge portions of a housing panel, wherein the relative sliding movement between the folded edge portions and the bending members cause bending of each of the folded edge portions to an inwardly slanted angle.
Abstract:
A no-lead type semiconductor package has a mold cap that forms a mold body. The corners of the mold body are reinforced with mold columns such that the corners have rounded protrusions and do not form 90° angles. The mold columns prevent the corner pads from peeling.
Abstract:
A method of assembling a semiconductor device includes providing a conductive lead frame panel and selectively half-etching a top side of the lead frame panel to provide a pin pads. A flip chip die is attached and electrically connected to the pin pads and then the lead frame panel and die are encapsulated with molding compound. A second selective half etching step is performed on a backside of the lead frame panel to form a plurality of separate input/output pins. The side walls of each input/output pin include arcuate surfaces in cross-section.
Abstract:
A method of teaching an eyepoint for a wire bonding operation is provided. The method includes (1) selecting a group of shapes from a region of a semiconductor device for use as an eyepoint, and (2) teaching the eyepoint to a wire bonding machine using at least one of (a) a sample semiconductor device, or (b) predetermined data related to the semiconductor device. The teaching step includes defining locations of each of the shapes with respect to one another.