FLEXIBLE DEVICES AND METHODS USING LASER LIFT-OFF

    公开(公告)号:US20200052164A1

    公开(公告)日:2020-02-13

    申请号:US16655134

    申请日:2019-10-16

    Abstract: A method of making a flexible device comprises providing a rigid substrate and a flexible substrate, disposing a layer of print adhesive on the rigid substrate, and micro-transfer printing micro-devices onto the print adhesive. Each of the micro-devices comprises a micro-device substrate separate, independent, and distinct from the rigid substrate and from the flexible substrate. A bonding layer is provided to bond the flexible substrate to the micro-devices such that (i) the bonding layer is disposed between the flexible substrate and the micro-devices and (ii) the micro-devices are disposed between the rigid substrate and the flexible substrate (e.g., forming a device structure). The flexible substrate is separated from the rigid substrate so that the micro-devices remain bonded to the flexible substrate providing a flexible device. The micro-devices can comprise at least a portion of a micro-device tether.

    Methods of making printable device wafers with sacrificial layers

    公开(公告)号:US10522575B2

    公开(公告)日:2019-12-31

    申请号:US16192751

    申请日:2018-11-15

    Abstract: Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. The semiconductor active layer and the sacrificial layer may be selectively etched in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. The capping layer and the first portion of the semiconductor active layer may be selectively etched to thereby expose the sacrificial layer. The sacrificial layer may be selectively removed from between the first portion of the semiconductor active layer and the handling substrate to thereby define a suspended integrated circuit chip encapsulated by the capping layer.

    Chiplets with connection posts
    35.
    发明授权

    公开(公告)号:US10468363B2

    公开(公告)日:2019-11-05

    申请号:US14822864

    申请日:2015-08-10

    Abstract: A component includes a plurality of electrical connections on a process side opposed to a back side of the component. Each electrical connection includes an electrically conductive multi-layer connection post protruding from the process side. A printed structure includes a destination substrate and one or more components. The destination substrate has two or more electrical contacts and each connection post is in contact with, extends into, or extends through an electrical contact of the destination substrate to electrically connect the electrical contacts to the connection posts. The connection posts or electrical contacts are deformed. Two or more connection posts can be electrically connected to a common electrical contact.

    Micro-transfer-printable flip-chip structures and methods

    公开(公告)号:US10224231B2

    公开(公告)日:2019-03-05

    申请号:US15811959

    申请日:2017-11-14

    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.

    MULTI-LEVEL MICRO-DEVICE TETHERS
    39.
    发明申请

    公开(公告)号:US20190051552A1

    公开(公告)日:2019-02-14

    申请号:US16058097

    申请日:2018-08-08

    Abstract: An exemplary wafer structure comprises a source wafer having a patterned sacrificial layer defining anchor portions separating sacrificial portions. A patterned device layer is disposed on or over the patterned sacrificial layer, forming a device anchor on each of the anchor portions. One or more devices are disposed in the patterned device layer, each device disposed entirely over a corresponding one of the one or more sacrificial portions and spatially separated from the one or more device anchors. A tether structure connects each device to a device anchor. The tether structure comprises a tether device portion disposed on or over the device, a tether anchor portion disposed on or over the device anchor, and a tether connecting the tether device portion to the tether anchor portion. The tether is disposed at least partly in the patterned device layer between the device and the device anchor.

Patent Agency Ranking