摘要:
Methods, devices and systems for patterning of substrates using charged particle beams without photomasks and without a resist layer. Material can be deposited onto a substrate, as directed by a design layout database, localized to positions targeted by multiple, matched charged particle beam columns. Reducing the number of process steps, and eliminating lithography steps, in localized material addition has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material deposition allows for controlled variation of deposition rate and enables creation of 3D structures. Local gas injectors and detectors, and local photon injectors and detectors, are local to corresponding ones of the columns, and can be used to facilitate rapid, accurate, targeted, highly configurable substrate processing, advantageously using large arrays of said beam columns.
摘要:
A microscopic metallic structure is produced by creating or exposing a patterned region of increased conductivity and then forming a conductor on the region using electrodeposition. In some embodiments, a microscopic metallic structure is formed on a substrate, and then the substrate is etched to remove the structure from the substrate. In some embodiments, a focused beam of gallium ion without a deposition precursor gas scans a pattern on a silicon substrate, to produce a conductive pattern on which a copper structure is then formed by electrochemical deposition of one or more metals. The structure can be freed from the substrate by etching, or can used in place. A beam can be used to access an active layer of a transistor, and then a conductor can be electrodeposited to provide a lead for sensing or modifying the transistor operation while it is functioning.
摘要:
The disclosure relates to ion beams systems, such as gas field ion microscopes, having multiple modes of operation, as well as related methods. In some embodiments, the disclosure provides a method of operating a gas field ion microscope system that includes a gas field ion source, where the gas field ion source includes a tip including a plurality of atoms.
摘要:
A chamber for exposing a workpiece to charged particles includes a charged particle source for generating a stream of charged particles, a collimator configured to collimate and direct the stream of charged particles from the charged particle source along an axis, a beam digitizer downstream of the collimator configured to create a digital beam including groups of at least one charged particle by adjusting longitudinal spacing between the charged particles along the axis, a deflector downstream of the beam digitizer including a series of deflection stages disposed longitudinally along the axis to deflect the digital beams, and a workpiece stage downstream of the deflector configured to hold the workpiece.
摘要:
A chamber for exposing a workpiece to charged particles includes a charged particle source for generating a stream of charged particles, a collimator configured to collimate and direct the stream of charged particles from the charged particle source along an axis, a beam digitizer downstream of the collimator configured to create a digital beam including groups of at least one charged particle by adjusting longitudinal spacing between the charged particles along the axis, a deflector downstream of the beam digitizer including a series of deflection stages disposed longitudinally along the axis to deflect the digital beams, and a workpiece stage downstream of the deflector configured to hold the workpiece.
摘要:
A chamber for exposing a workpiece to charged particles includes a charged particle source for generating a stream of charged particles, a collimator configured to collimate and direct the stream of charged particles from the charged particle source along an axis, a beam digitizer downstream of the collimator configured to create a digital beam including groups of at least one charged particle by adjusting longitudinal spacing between the charged particles along the axis, a deflector downstream of the beam digitizer including a series of deflection stages disposed longitudinally along the axis to deflect the digital beams, and a workpiece stage downstream of the deflector configured to hold the workpiece.
摘要:
In a projection ion beam machining apparatus having a liquid metal ion source, a combination of two or three electrostatic lenses arranged between the liquid metal ion source and a sample and a stencil mask exchangeably arranged in the combination of the electrostatic lenses, when a distance from substantial center of the electrostatic lens most proximate to the ion source and an ion emitting portion of the ion source is designated by Lo, a distance from the substantial center of the electiostatic lens most proximiate to the sample and the surface of the sample is designated by Li and a distance between the substantial centers of the two lenses is designated by L, by making a value of (L/Lo)(L/Li) equal to or larger than 400, current density on the sample of ion beam accelerated to several 10 kV for projecting a pattern of a stencil mask can be made equal to or larger than 20 mA per 1 square cm and resolution of edge can be made equal to or smaller than 0.2 &mgr;m when the size of the ion beam is 5 &mgr;m. As a result, a region having a size equal to or smaller than several 10 &mgr;m can be machined at speed several times or more as fast as that of FIB having equivalent machining accuracy.
摘要:
The invention makes it possible to develop the devices for producing nanostructures which are used for manufacturing the semiconductor items having high resolution optical instruments. The inventive device comprises a vacuum chamber provided with a pumping and annealing system, a unit for introducing the semiconductor wafers into the chamber, a controllable energy ion source, a mass-separator, an electron detector, a holder for the semiconductor wafer, a device for measuring the ion current, a quadrupole mass-analyzer and a computer provided with a monitor and interface. Axes of column of the ion beam transportation, an optical microscope and electron projector are arranged on the same plane as a normal line to the semiconductor wafer in a working position thereof and intercross at the same point on the front face of the wafer. An optical microscope and electron projector are arranged on the front face of the wafer and have a minimal angle therebetween.
摘要:
The present invention provides a method for creating microscopic high resistivity structures on a target by directing a focused ion beam toward an impact point on the target and directing a precursor gas toward the impact point, the ion beam causing the precursor gas to decompose and thereby deposit a structure exhibiting high resistivity onto the target. The precursor gas preferably comprises a first compound that would form a conductive layer and a second compound that would form an insulating layer if each of the first and second compounds were applied alone in the presence of the ion beam.
摘要:
A method of wiring a semiconductor device which allows a manufacturing step to be simplified without deteriorating an insulation characteristic of an aerial wiring. The semiconductor device wiring apparatus formed thereby includes a first beam column 1a disposed above a substrate 50 and a second beam column 1b disposed horizontally thereto. A wiring portion of the aerial wiring to be formed upwardly is formed by using the first beam column 1a and a wiring portion to be formed horizontally to wiring layer of the substrate 50 is formed by using the second beram column, which results in that no insulating film for the aerial wiring is required to simplify manufacturing steps.