Abstract:
Methods of forming a Co cap on a Cu interconnect in or through an ULK ILD with improved selectivity while protecting an ULK ILD surface are provided. Embodiments include providing a Cu filled via in an ULK ILD; depositing a Co precursor and H2 over the Cu-filled via and the ULK ILD, the Co precursor and H2 forming a Co cap over the Cu-filled via; depositing an UV cured methyl over the Co cap and the ULK ILD; performing an NH3 plasma treatment after depositing the UV cured methyl; and repeating the steps of depositing a Co precursor through performing an NH3 plasma treatment to remove impurities from the Co cap.
Abstract:
Semiconductor structures and fabrication methods are provided having a bridging film which facilitates adherence of both an underlying layer of dielectric material and an overlying stress-inducing layer. The method includes, for instance, providing a layer of dielectric material, with at least one gate structure disposed therein, over a semiconductor substrate; providing a bridging film over the layer of dielectric material with the at least one gate structure; and providing a stress-inducing layer over the bridging film. The bridging film is selected to facilitate adherence of both the underlying layer of dielectric material and the overlying stress-inducing layer by, in part, forming a chemical bond with the layer of dielectric material, without forming a chemical bond with the stress-inducing layer.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Circuit fabrication methods are provided which include, for example: providing the circuit structure with at least one gate structure extending over a first region and a second region of a substrate structure, the at least one gate structure including a capping layer; and modifying an etch property of at least a portion of the capping layer of the at least one gate structure, where the modified etch property inhibits etching of the at least one gate structure during a first etch process facilitating fabrication of at least one first transistor in the first region and inhibits etching of the at least one gate structure during a second etch process facilitating fabrication of at least one second transistor in the second region.
Abstract:
Embodiments of the present invention provide improved methods for fabricating field effect transistors such as finFETs. Stressor regions are used to increase carrier mobility. However, subsequent processes such as deposition of flowable oxide and annealing can damage the stressor regions, diminishing the amount of stress that is induced. Embodiments of the present invention provide a protective layer of silicon or silicon oxide over the stressor regions prior to the flowable oxide deposition and anneal.
Abstract:
A method for flowable oxide deposition is provided. An oxygen source gas is increased as a function of time or film depth to change the flowable oxide properties such that the deposited film is optimized for gap fill near a substrate surface where high aspect ratio shapes are present. The oxygen gas flow rate increases as the film depth increases, such that the deposited film is optimized for planarization quality at the upper regions of the deposited film.
Abstract:
Integrated circuits with smooth metal gates and methods for fabricating integrated circuits with smooth metal gates are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a partially fabricated integrated circuit including a dielectric layer formed with a trench bound by a trench surface. The method deposits metal in the trench and forms an overburden portion of metal overlying the dielectric layer. The method includes selectively etching the metal with a chemical etchant and removing the overburden portion of metal.
Abstract:
Various embodiments include methods and integrated circuit structures. In some cases, an integrated circuit (IC) structure includes: a substrate; a set of fin structures overlying the substrate, the set of fin structures including a substrate base and a silicide layer over the substrate base; an oxide layer located between adjacent fins in the set of fin structures; and a nitride layer over the set of fin structures, wherein a height of the nitride layer is substantially uniform across the set of fin structures.
Abstract:
One method disclosed herein includes, among other things, forming a process layer on a substrate, forming a carbon-containing silicon dioxide layer above the process layer and forming a patterned mask layer above the carbon-containing silicon dioxide layer. The patterned mask layer exposes portions of the carbon-containing silicon dioxide layer. A material modification process is performed on the exposed portions of the carbon-containing silicon dioxide layer to generate modified portions, and the modified portions are removed. The process layer is etched using remaining portions of the carbon-containing silicon dioxide layer as an etch mask.
Abstract:
Methods for producing integrated circuits and integrated circuits produced by such methods are provided. In an exemplary embodiment, a method for producing an integrated circuit includes forming a base dielectric layer overlying a substrate. A sacrificial layer is formed overlying the base dielectric layer, and adjacent conductive components are formed in the sacrificial layer where the adjacent conductive components are physically separated by material of the sacrificial layer. The sacrificial layer is removed such that an air gap is defined between the adjacent conductive components, where the air gap overlies the base dielectric layer. A cap dielectric layer is formed overlying the base dielectric layer and the air gap to enclose the air gap within the integrated circuit.