Abstract:
Stable surface passivation on a crystalline silicon substrate is provided by forming a more heavily doped region as a front surface field and/or a doped dielectric layer under a passivation layer on the silicon substrate surface. A passivation layer is deposited on the front surface field and/or doped dielectric layer.
Abstract:
The present disclosure enables high-volume cost effective production of three-dimensional thin film solar cell (3-D TFSC) substrates. Pyramid-like unit cell structures 16 and 50 enable epitaxial growth through an open pyramidal structure 3-D TFSC embodiments 70, 82, 100, and 110 may be combined as necessary. A basic 3-D TFSC having a substrate, emitter, oxidation on the emitter, and front and back metal contacts allows for simple processing. Other embodiments disclose a selective emitter, selective backside metal contacts, and front-side SiN ARC layers. Several processing methods, including process flows 150, 200, 250, 300, and 350, enable production of these 3-D TFSCs.
Abstract:
Annealing solutions providing damage-free laser patterning utilizing auxiliary heating to anneal laser damaged ablation regions are provided herein. Ablation spots on an underlying semiconductor substrate are annealed during or after pulsed laser ablation patterning of overlying transparent passivation layers.
Abstract:
Methods and systems are provided for the split and separation of a layer of desired thickness of crystalline semiconductor material containing optical, photovoltaic, electronic, micro-electro-mechanical system (MEMS), or optoelectronic devices, from a thicker donor wafer using laser irradiation.
Abstract:
Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
Abstract:
A solar photovoltaic module laminate for electric power generation is provided. The module comprises a plurality of solar cells embedded within the module laminate and electrically interconnected to form at least one string of electrically interconnected solar cells within said module laminate. And at least one remote-access module switch (RAMS) power electronic circuit embedded within the module laminate electrically interconnected to and powered with said at least one string of electrically interconnected solar cells and serving as a remote-controlled module power delivery gate switch.
Abstract:
Solar cell array solutions including monolithic solar cell arrays and fabrication methods. A first patterned cell metallization contacts base and emitter regions of each of a plurality of solar cells having a light receiving frontside and a backside. An electrically insulating continuous backplane layer is attached to the backside of the solar cells and covers the first cell metallization of each of the solar cells. Via holes through the continuous backplane layer provide access to the first cell metallization. A second cell metallization is connected to the first cell metallization of each of the solar cells and electrically interconnects the solar cells in the array.
Abstract:
Back contact solar cells having a discontinuous emitter comprising a plurality of emitter islands are provided. The back contact solar cell comprises a semiconductor layer with a background base doping and having a sunlight-receiving frontside and a backside opposite said sunlight-receiving frontside. An emitter layer having a doping opposite said semiconductor layer background doping is positioned on the semiconductor layer backside. A trench isolation pattern partitions the emitter layer and semiconductor layer into a plurality of discontinuous emitter regions on the semiconductor layer backside. At least one base island region contacting the semiconductor layer is positioned within each of the discontinuous emitter regions on the semiconductor layer backside.
Abstract:
According to one aspect of the disclosed subject matter, a method for forming a monolithically isled back contact back junction solar cell using bulk wafers is provided.