摘要:
Disclosed is a User Equipment device configured to select a suitable acknowledgement timing configuration in a time division duplex-frequency division duplex (TDD-FDD) carrier aggregation (CA) enabled wireless network, comprising establishing, by a user equipment (UE), a connection to a primary serving cell (PCell) and a secondary serving cell (SCell) of a base station, the PCell having a first TDD or first FDD configuration, the SCell having a second FDD or second TDD configuration, receiving, by the UE, downlink data through the PCell and SCell, categorizing a type of downlink data subframe in use by the SCell, selecting, by the UE, a hybrid automatic repeat request (HARQ) timing configuration based on the type of downlink data subframe for use by the SCell, and transmitting acknowledgement information associated with the downlink data according to the selected hybrid automatic repeat request (HARQ) timing configuration on PCell. Other embodiments may be described and claimed.
摘要:
Devices and methods of reducing blind decoding attempts of user equipment (UE) suing carrier aggregation are generally described. The UE may determine at least one subframe in a modification period to monitor for a physical downlink control channel (PDCCH) formed in accordance with a Discontinuous Transmission Downlink Control Information (DTX DCI) format. The DTX DCI format may indicate whether the serving cell is in a DTX or non-DTX state. The UE may determine the DTX state of each serving cell from the DTX DCI format and monitor an enhanced PDCCH of each serving cell in the non-DTX state to provide a scheduling assignment for the UE, without monitoring each serving cell in the DTX state. The UE may receive higher layer signaling that indicates a repetition period and subframe offset for DTX DCI format transmissions or a bitmap of the DTX DCI format transmissions for subframes within each modification period.
摘要:
Devices and methods of reducing overall Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) of user equipment (UE) using a large amount of carrier aggregation are generally described. The UE may receive a subframe from an enhanced NodeB (eNB). The subframe may contain a physical downlink control channel (PDCCH) formed in accordance with a Downlink Control information (DCI) format. The DCI format may comprise a Downlink Assignment Index (DAI) for Time Division Duplexed (TDD) and Frequency Division Duplexed (FDD) operation. The UE may determine, dependent on the DAI, a number and ordering of Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) bits to be transmitted on a Physical Uplink Shared Channel (PUSCH) and subsequently transmit the HARQ-ACK bits.
摘要:
A rotary lock block type drilling riser connector has a main body connection part and control pipeline connection parts. A driving ring is set between flanges, a plurality of fan-shaped grooves are set on the lower end of the flange of the upper joint, each fan-shaped groove having a lock block therein; each lock block is slidably connected with a T-shaped elongated slot of the upper joint; the driving ring is fixedly connected with the flange upwardly, many segments of the horizontal T-shaped slots are evenly distributed in the inner surface of the driving ring, another screw hole is provided in the outer circumferential surface of the lock block, and the driving ring is slidably connected with the lock block in the circumferential direction.
摘要:
Technology for physical uplink control channel (PUCCH) resource mapping corresponding to an enhanced physical downlink control channel (ePDCCH) is disclosed. One method can include a node mapping a PUCCH resource nPUCCH(1) corresponding to an ePDCCH for PUCCH resource hybrid automatic repeat request-acknowledgement (HARQ-ACK) feedback. The PUCCH resource nPUCCH(1) can be determined using a lowest PRB index including at least one enhanced control channel element (eCCE) of ePDCCH resources and a total number of eCCE in one physical resource block (PRB).
摘要:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.
摘要:
Device-to-device (D2D) communications between user equipment (UE) allows two UEs in a long-term evolution (LTE) network to communicate directly with each other without the need to first send their communications to a network (such as via an evolved node B). In order to communicate in a D2D mode, the UEs first need to discover each other. One method of allowing the UEs to discover each other involves the use of a physical uplink control channel (PUCCH). After a network determines that certain UEs would benefit from D2D communication, the UEs can be set up to send and receive discovery signals using the PUCCH.
摘要:
Embodiments of a central processing unit and methods for supporting coordinated multi-point (CoMP) transmissions in a 3GPP LTE network with non-ideal backhaul links are generally described herein. In some embodiments, the CPU may be arranged for scheduling and assigning resources for subordinate enhanced node Bs (eNBs) over the backhaul links for CoMP transmissions. The scheduling may include an additional number of HARQ processes to compensate, at least in part, for backhaul link latency.
摘要:
A Second Synchronous Signal (SSS) for a 3GPP LTE downlink signal is generated in such a way that a legacy User Equipment (UE) can determine whether the downlink signal comprises a legacy downlink signal or a New Carrier Type (NCT) downlink signal, which is unavailable to a legacy UE. One exemplary embodiment provides that a first binary sequence and a second binary sequence are generated in which the first and second binary sequences are part of the SSS for the downlink signal. The first binary sequence is multiplied by a first scrambling sequence, and the second binary sequence by a second scrambling sequence in which the first and second scrambling sequences are selected to indicate that the downlink signal is a new carrier type downlink signal. Other exemplary embodiments provide that an order of the first and second scrambling sequences indicates whether the downlink signal is a NCT downlink signal.
摘要:
The present invention discloses that under modified chemical vapor deposition (mCVD) conditions an epitaxial silicon film may be formed by exposing a substrate contained within a chamber to a relatively high carrier gas flow rate in combination with a relatively low silicon precursor flow rate at a temperature of less than about 550° C. and a pressure in the range of about 10 mTorr-200 Torr. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using tetrasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.