摘要:
Embodiments of a central processing unit and methods for supporting coordinated multi-point (CoMP) transmissions in a 3GPP LTE network with non-ideal backhaul links are generally described herein. In some embodiments, the CPU may be arranged for scheduling and assigning resources for subordinate enhanced node Bs (eNBs) over the backhaul links for CoMP transmissions. The scheduling may include an additional number of HARQ processes to compensate, at least in part, for backhaul link latency.
摘要:
Embodiments for providing virtual carrier sensing for LTE are generally described herein. In some embodiments, a first evolved Node B (eNB) sends a notification of subsequent DL transmission to a first UE in a downlink. In the uplink, the first UE sends a confirmation of the received DL notification. A second eNB overhears the confirmation, decodes it and extracts the information of the DL resources that the first eNB is planning to use. If the second eNB is not already transmitting in the indicated DL resources, the second eNB marks the indicated DL resources as busy and refrains from transmitting in those resources. The second eNB may then reschedule its transmission using alternative resources so that interference from the second eNB1 may be avoided.
摘要:
A User Equipment and an eNodeB system are configured for performing interference mitigation in the UE. Input circuitry in the wireless communication device receives an OFDM downlink channel signal associated with a serving cell and receives downlink control information for an interfering cell. The downlink control information is used by the UE to perform channel estimation for the interfering cell. An interference mitigation module is provided for calculating an interference-mitigated version of the received channel signal using estimated channel transfer functions for both the serving cell and the interfering cell, power control parameters and using set of modulation constellation points corresponding to the OFDM downlink channel. Other embodiments may be described and claimed.
摘要:
Various embodiments are generally directed to improved channel quality information feedback techniques. In one embodiment, for example, an evolved node B (eNB) may comprise a processor circuit, a communication component for execution by the processor circuit to receive a channel quality index for a physical downlink shared channel (PDSCH), the channel quality index associated with a defined reference resource, and a selection component for execution by the processor circuit to select a modulation and coding scheme (MCS) for transmission over the PDSCH of user equipment (UE) data in one or more resource blocks, the selection component to compensate for a difference between a cell-specific reference signal (CRS) overhead of the defined reference resource and a CRS overhead of the one or more resource blocks when selecting the MCS. Other embodiments are described and claimed.
摘要:
Embodiments of the present disclosure describe apparatuses, systems, and methods for initialization of pseudo noise (PN) sequences for reference signals and data scrambling. Some embodiments may be to initialize the first M-sequence of the PN sequence with a fixed value; and initialize the second M-sequence of the PN sequence with a compressed value. Some embodiments may be to initialize the first M-sequence of the PN sequence with a fixed value; initialize the second M-sequence of the PN sequence with a part of the initialization parameters; and shift the PN sequence by another part of the initialization parameters. Some embodiments may be to initialize the first M-sequence of the PN sequence with a part of the initialization parameters; and initialize the second M-sequence of the PN sequence with another part of the initialization parameters. The embodiments may lead to a more efficient hardware design.
摘要:
Embodiments relate to apparatus for wireless interference mitigation within a first User Equipment (UE). The apparatus comprises at least one channel estimator for estimating a first channel transfer function associated with a first received signal designated for the first UE, and for estimating a second channel transfer function associated with a second received, interference, signal. A symbol estimator is responsive to the at least one channel estimator to process at least the first received signal to produce a symbol estimation. A demodulator, which is responsive to the channel estimator, demodulates the symbol estimation to an output representing a received data unit corresponding to the symbol estimation. The demodulator has a processing unit arranged to demodulate the symbol estimation using the first channel transfer function, the second channel transfer function and a respective modulation scheme for at least the first received signal.
摘要:
Embodiments of providing enhanced interference measurements for CSI feedback are generally described herein. In some embodiments, CSI-IM resources are used by UE to perform interference measurements. The serving cell determines a hopping pattern for varying a position of the determined CSI-IM resources in subframes transmitted to the served UE. The determined CSI-IM resources and the determined CSI-IM resources hopping pattern are transmitted to the served UE. The serving node transmits a zero-power (ZP) CSI-RS. The serving node receives an interference measurement from the served UE based on CSI-IM and ZP CSI-RS provided to the served UE from the serving cell. Collisions between the CSI-IM of the serving node and CSI-IM of the non-serving nodes are minimized by the determined CSI-IM resources hopping pattern.
摘要:
Embodiments of the present disclosure describe apparatuses, methods and machine-readable storage medium for Reference Signal Received Power (RSRP) measurement and allocation of Downlink (DL) transmission resources.
摘要:
Embodiments of a Machine Type Communication User Equipment (MTC UE), Next Generation Node-B (gNB) and methods of communication are generally described herein. The MTC UE may determine a system timing based on reception of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). The MTC UE may receive, from the gNB, radio resource control (RRC) signaling that indicates one or more parameters of a configurable resynchronization signal (RSS). The RSS may be for resynchronization, by the MTC UE, after the MTC UE awakens from a power save mode. The parameters of the RSS in the RRC signaling may depend on a target coverage of the MTC UE. The MTC UE may determine an updated system timing based on reception of the RSS.
摘要:
Embodiments relate to apparatus for wireless interference mitigation within a first User Equipment (UE). The apparatus comprises at least one channel estimator for estimating a first channel transfer function associated with a first received signal designated for the first UE, and for estimating a second channel transfer function associated with a second received, interference, signal. A symbol estimator is responsive to the at least one channel estimator to process at least the first received signal to produce a symbol estimation. A demodulator, which is responsive to the channel estimator, demodulates the symbol estimation to an output representing a received data unit corresponding to the symbol estimation. The demodulator has a processing unit arranged to demodulate the symbol estimation using the first channel transfer function, the second channel transfer function and a respective modulation scheme for at least the first received signal.