Abstract:
A resin-encapsulated semiconductor package and a packaging structure, make it possible to provide for a high density mounting arrangement. Specifically, outer leads protrude from the two long sides of a rectangular package. The inner leads in the package, connected to the outer leads protruding from one long side, are connected through wires to the bonding pads of a semiconductor chip encapsulated in the package, whereas the inner leads in the package, connected to the outer leads protruding from the other long side, are in an electrically floating state in the package. The semiconductor packages are arranged in a direction on a card-shaped mounting board, and the opposed outer leads of adjoining semiconductor packages are electrically connected by wiring on the mounting board. The wirings are laid below the semiconductor packages so that they extend generally linearly.
Abstract:
A ground connecting pattern of the printed circuit board is separated by forming a spiral circuit pattern element onto a printed circuit board. The separated ground connecting patterns are electrically connected by an electric part, thereby suppressing radiation noises of the printed circuit board.
Abstract:
A system for modifying a printed circuit board allows parallel design of the printed circuit board and a programmable gate or logic array used on the circuit board. The printed circuit board design can be fixed before the gate array design is complete, which allows for flexibility in pin assignments of the high density integrated circuit mounted on the circuit board. Each pin of the gate array that can vary has a pair of vias connected by a conductive track. Changing signal paths requires cutting this track and using a jumper to make the new connection.
Abstract:
A resistor of SMD (Surface Mounted Device) construction includes a film of a resistive alloy as a resistive track on two electrically separated carrier plate elements of copper, which are constructed as contact elements solderable to the terminals of a printed circuit board to thereby ensure good heat dissipation into a printed circuit board. In order to manufacture such resistors, a resistive film sufficient for a plurality of individual resistors is adhered to but electrically isolated from a large copper plate and the laminate formed thereby is split into the individual resistors after producing the individual resistive tracks and their electrical connections to the copper plate and after producing gaps between the plate elements for each track.
Abstract:
A multi-layered printed circuit board is provided. This printed circuit board includes generally a substrate formed with first and second base layers, a first conductive pattern block formed on a surface of the first base layer of the substrate to connect with a power terminal of an IC mounted on an opposite surface of the first base layer, a second conductive pattern block formed on the second base layer to connect with a grounding terminals of the IC, a power conductor arranged in the same plane as the first conductive pattern blocks at a preselected interval therebetween, a grounding conductor arranged in the same plane as the second conductive pattern blocks at a preselected interval therebetween, a first EMI filter provided adjacent the IC in connection with the first conductive pattern block for reducing noise concentrated on the first conductive pattern block, and a second EMI filter provided adjacent the IC in connection with the second conductive pattern block for reducing noise concentrated on the second conductive pattern block.
Abstract:
A capacitor mounting structure for printed circuit boards wherein the capacitor includes first and second terminals which are connected to first and second conductor planes in the printed circuit board. Three vias are mounted in the printed circuit board in a position to be aligned with the middle of the capacitor. A first conductor pad is mounted underneath one end of the capacitor and includes spaced apart extension portions which electrically attach to the first and third via. A second conductor pad is mounted under the other end of the capacitor and includes a central extension portion which attaches to the second or middle via. In this manner, the region available for generation of parasitic inductance is minimized thereby increasing the operating efficiency of the capacitor.
Abstract:
A surface-mounted electrical component has rectangular section leads that project outwardly from the edges of the component body. The leads are bent down towards the surface of the substrate and are twisted through 90 degrees about their length to make the leads compliant in a direction transverse of their width where they emerge from the body. The lower end of the leads are straight and untwisted, making a vertical butt solder joint with contact pads on the substrate. The twisted region of the leads are treated, such as by nickel plating, to render them non-wetted by solder. Because of the greater spacing possible between the contact pads, conductive tracks can extend through gaps between the contact pads beneath the body of the component.
Abstract:
A method for manufacturing a printed wiring board with conductive posts includes forming on a first foil provided on carrier a first conductive layer including mounting pattern to connect electronic component via conductive posts, forming on the first foil a laminate including an insulating layer and a second foil to form the laminate on the first conductive layer, removing the carrier, forming a metal film on the laminate and first film, forming resist on the metal film to have pattern exposing portion of the metal film corresponding to the mounting pattern and portion of the second foil for a second conductive layer, forming an electroplating layer on the portion of the metal film not covered by the resist, removing the resist, and applying etching to remove the first and second foils below the metal film exposed by the removing the resist and to form the posts on the mounting pattern.
Abstract:
A circuit board circuit apparatus and a light source apparatus including a substrate, a circuit layer, and at least one electronic component are disclosed. The circuit layer is formed on a surface of the substrate. The circuit layer includes a first circuit and a second circuit which are coplanar-disposed. The at least one electronic component is disposed on the circuit layer and connected with the circuit layer. Each electronic component has a first contact and a second contact. At least a part of the second circuit is disposed between the at least one electronic component and the first circuit. The at least one electronic component crosses over the second circuit, so that the second circuit penetrates through the bottom of the electronic component between the first contact and the second contact.
Abstract:
Provided is a printed wiring board including a first heat dissipation pattern placed in one surface layer on which a semiconductor package is to be mounted, a second heat dissipation pattern placed in the other surface layer, and an inner layer conductor pattern placed in an inner layer, in which through holes are formed in the printed wiring board; the first heat dissipation pattern has a joint portion which is placed in an opposed region opposed to a heat sink of the semiconductor package and which is joined to the heat sink with solder; at least one of the through holes is placed in the opposed region; and the second heat dissipation pattern is formed in a pattern in which an end portion of a conductor film in the one of the through holes on the other surface layer side is separated.