Abstract:
In a conductor foil for conductively connecting electrical and/or electronic components, the conductor foil including printed circuit traces, insulated to the outside and applied on a non-conductive, elastically malleable carrier foil. The conductive foil also includes soldering surfaces connected to the printed circuit traces, for soldering to electric terminals of components, in addition, the conductor foil includes feed line segments through which the printed circuit traces are led to the soldering surfaces, in order, in response to shaking stresses, to avoid damage to the soldering points by vibrations transmitted by the feed line segments. Furthermore, the conductor foil has stiffening segments branching off from the feed line segments, the stiffening segments, in response to shaking stresses, causing a force diversion of the vibrations onto the stiffening segments via the feed line segment movable end, which is not connected to the soldering surfaces.
Abstract:
A process for mounting a surface-mount component(12), such as a stick-leaded device, to a circuit board (10) having a pair of plated through-holes and at least one additional through-hole (20), each of which extends through the circuit board (10). The leads (16) of the component (12) are then inserted into the plated through-holes so as to position the component (12) on a first side of the circuit board (10), after which a material (14) is applied to the second (opposite) side of the circuit board (10) so that the material (14) flows through the second through-hole (20), contacts the component (12), and bonds the component (12) to the first side of the circuit board (10). For this purpose, the material (14) preferably contacts the entire surface (18) of the component (12) facing a near surface region of the circuit board (10) and bonds the component surface (18) to the surface region.
Abstract:
A slider suspension system for use in a magnetic recording disk file comprised of a laminated suspension positioned between an actuator arm and a read/write slider. The laminated suspension is comprised of a conductor layer, a dielectric layer and a support layer. The conductor layer is comprised of a high strength conductive copper alloy selected from the group consisting of Cu--Ni--Si--Mg alloy, Be--Cu--Ni alloy, and Cu--Ti alloy, wherein the conductive layer has a thickness less than or equal to eighteen microns. The dielectric layer is comprised of an electrically insulating material such as a polyimide. The support layer is comprised of a rigid material such as stainless steel.
Abstract:
A launch-protected electronic assembly including a printed circuit board having several conductor paths. An electronic component is provided that is secured to the printed circuit board. The electronic component has several electrical connections each contacting a corresponding conductor path. The assembly further includes a support and at least one of a flexible adhesive layer and a dot-shaped flexible adhesive location connecting the printed circuit board to the support.
Abstract:
A vibration damping system for a printed circuit board in which laminated damping elements are remotely positioned from the printed circuit board.The laminated damping elements are connected to the printed circuit board by post structural means fastened rigidly at each end to the printed circuit board and to the laminated damping element, respectively, for the purpose of transferring vibration energy from the printed circuit board to the damping element. The laminated damping elements comprise a high hysteresis bonding agent for bonding the laminate and for absorbing the vibration energy. The high hysteresis bonding agent is stressed in a shear mode for greatest energy absorption efficiency.
Abstract:
Relatively low noise capacitors are provided for surface mounted applications. Electro-mechanical vibrations generate audible noise, which are otherwise relatively reduced through modifications to MLCC device structures, and/or their mounting interfaces on substrates such as printed circuit boards (PCBs). Different embodiments variously make use of flexible termination compliance so that surface mounting has reduced amplitude vibrations transmitted to the PCB. In other instances, side terminal and transposer embodiments effectively reduce the size of the mounting pads relative to the case of the capacitor, or a molded enclosure provides standoff, termination compliance and clamping of vibrations.
Abstract:
An electronic component, a board having the same, and a method of manufacturing a metal frame for the electronic component. The electronic component includes a multilayer ceramic capacitor including a plurality of external electrodes formed on opposing surfaces of a capacitor body, respectively; and metal frames bonded to the external electrodes, respectively, wherein each of the metal frames includes an inner support portion, an outer support portion disposed on an outer surface of the inner support portion, and a connecting portion connecting portions of the inner support portion and the outer support portion to each other.
Abstract:
What is described is a mounting aid for mounting electrical components, in particular electrolytic capacitors or chokes, on a printed circuit board, said mounting aid comprising a body, which has compartments for receiving the electrical components, wherein the compartments have a base with openings for the insertion of connection wires of the electrical components, and metal parts fastened to the body, which metal parts each form at least one contact pin on the underside of the body and each from a busbar for connection to electrical components in a plurality of compartments of the body.
Abstract:
A multilayer ceramic capacitor includes a stacked body and first and second external electrodes. When a dimension of the stacked body in a length direction is L0, a dimension of the stacked body in a width direction is W0, a dimension of the stacked body in a stacking direction is T0, a dimension of the first outer layer portion in the stacking direction is T1, a dimension of the second outer layer portion in the stacking direction is T2, a dimension of the first side margin in the width direction is W1, a dimension of the second side margin in the width direction is W2, a dimension of the first end margin in the length direction is L1, and a dimension of the second end margin in the length direction is L2, conditions of (L1+L2)/L0>(W1+W2)/W0 and (L1+L2)/L0>(T1+T2)/T0 are satisfied, and a condition of 0.244≤(L1+L2)/L0≤0.348 is satisfied.