摘要:
An apparatus for electroless plating includes a plating bath containing an aqueous metal salt solution, and a magnetic field generator for generating a magnetic field. An object to be plated is immersed in the solution. The magnetic field generated by the magnetic field generator increases the level at which the metal ions are attracted to a surface of the object. Therefore, a layer of plating of good quality may be formed at a rapid rate.
摘要:
A semiconductor package and associated methods, the semiconductor package including a substrate including a socket, and connection terminals including a solder ball and a supporting portion extending from the solder ball into the socket.
摘要:
A semiconductor package may include a substrate having external contact terminals. A semiconductor chip having bonding pads may be formed on the substrate. Conductive bumps may connect the external contact terminals of the substrate to the bonding pads of the semiconductor chip. An underfill may be interposed between the substrate and the semiconductor chip. The underfill may include a first underfill region composed of a first material adjacent to the semiconductor chip and a second underfill region composed of a second material adjacent to the substrate, the first material having a higher glass transition temperature than the second material.
摘要:
Example embodiments relate to a semiconductor package. The semiconductor package may include a mounting substrate, a semiconductor chip mounted to the mounting substrate, at least one passive component passing therethrough and mounted to the mounting substrate, and a cover covering the mounting substrate, the semiconductor chip and the at least one passive component.
摘要:
In one embodiment, a semiconductor module includes at least one semiconductor chip package, a board having functional pads and dummy pads, and at least one solder joint electrically connecting the semiconductor chip package and one of the functional pads of the board. Furthermore, at least one supporting solder bump is formed on one of the dummy pads and disposed under a portion of the semiconductor chip package. For example, the supporting solder bump may be disposed under a peripheral area of the semiconductor chip package.
摘要:
A method of testing a substrate may involve photographing a first chip on a first face of the substrate to obtain a first image of the first chip, and photographing a second chip on a second face of the substrate opposite to the first face without reversing the substrate to obtain a second image of the second chip. The normality of the first and the second chips may be determined based on the first and the second images.
摘要:
In one embodiment, a semiconductor module includes at least one semiconductor chip package, a board having functional pads and dummy pads, and at least one solder joint electrically connecting the semiconductor chip package and one of the functional pads of the board. Furthermore, at least one supporting solder bump is formed on one of the dummy pads and disposed under a portion of the semiconductor chip package. For example, the supporting solder bump may be disposed under a peripheral area of the semiconductor chip package.
摘要:
A method for correcting color variations on the surface of a wafer, a method for selectively detecting a defect from different patterns, and computer readable recording media for the same are provided. Color variations in images of different parts of a wafer can be corrected using the mean and standard deviation of grey level values for the pixels forming each of the different parts of the wafer. In addition, different threshold values are applied to metal interconnect patterns and spaces of the wafer so that a defect can be selectively detected from the different patterns. Thus, a bridge known as a fatal, or killing defect to a semiconductor device can be detected without also falsely detecting grains as fatal defects. Due to increased defect screening capacity of the methods, the defect detecting method can be further efficiently managed.
摘要:
A method of measuring a concentration of a material includes irradiating an infrared light onto a substrate having a layer including a first material and dopants, wherein the infrared light is partially absorbed by and partially transmitted through the substrate including the layer. Intensities of the infrared light absorbed in the first material and the dopants are computed according to light wave numbers by utilizing a difference between intensities of the infrared light before and after transmitting the substrate and layer and by utilizing a difference between intensities of the infrared light absorbed in the substrate and layer and absorbed in only the substrate. Concentrations of the dopants are obtained by utilizing a ratio of light wave number regions corresponding to predetermined intensities of infrared light absorbed in the dopants relative to light wave number regions corresponding to the predetermined intensity of infrared light absorbed in the first material.
摘要:
A transmission-type extrinsic Fabry-Perot interferometric optical fiber sensor and a method used for integrity monitoring of structures and measuring strain and temperature are provided. The transmission-type extrinsic Fabry-Perot interferometric optical fiber sensor includes first single-mode optical fiber and second single-mode optical fiber, laser device, and optical detector. The first single-mode optical fiber is inserted into an end of a capillary quartz-glass tube and the second single-mode optical fiber is inserted into the other end of the capillary quartz-glass tube. Air gap is formed between the first single-mode optical fiber and the second single-mode optical fiber in the capillary quartz-glass tube. Gap length of the air gap changes in response to magnitude and direction of transformation of the capillary quartz-glass tube. The laser device launches light into an end of the first single-mode optical fiber. The end of the first single-mode optical fiber is not inserted into the capillary quartz-glass tube. The optical detector detects interferometric fringe of light. The light is launched from the laser device and passed through the first single-mode optical fiber, the air gap, and the second single-mode optical fiber. The number of occurrence of the interferometric fringe and trend of signal level are determined by change of the gap length.