Abstract:
A silicon-on-insulator (SOI) structure is provided for forming through vias in a silicon wafer carrier structure without backside lithography. The SOI structure includes the silicon wafer carrier structure bonded to a silicon substrate structure with a layer of buried oxide and a layer of nitride lo separating these silicon structures. Vias are formed in the silicon carrier structure and through the oxide layer to the nitride layer and the walls of the via are passivated. The vias are filled with a filler material of either polysilicon or a conductive material. The substrate structure is then etched back to the nitride layer and the nitride layer is etched back to the filler material. Where the filler material is polysilicon, the polysilicon is etched away forming an open via to the top surface of the carrier wafer structure. The via is then backfilled with conductive material.
Abstract:
A physically secure processing assembly is provided that includes dies mounted on a substrate so as to sandwich the electrical contacts of the dies between the dies and the substrate. The substrate is provided with substrate contacts and conductive pathways that are electrically coupled to the die contacts and extend through the substrate. Electrical conductors surround the conductive pathways. A monitoring circuit detects a break in continuity of one or more of the electrical conductors, and preferably renders the assembly inoperable. Preferably, an epoxy encapsulation is provided to prevent probing tools from being able to reach the die or substrate contacts.
Abstract:
A method for removing a thinned silicon structure from a substrate, the method includes selecting the silicon structure with soldered connections for removal; applying a silicon structure removal device to the silicon structure and the substrate, wherein the silicon structure removal device comprises a pre-determined temperature setpoint for actuation within a range from about eighty percent of a melting point of the soldered connections to about the melting point; heating the silicon structure removal device and the soldered connections of the silicon structure to within the range to actuate the silicon structure removal device; and removing the thinned silicon structure. Also disclosed is a structure including a plurality of layers, at least one layer including a thinned silicon structure and solder coupling the layer to another layer of the plurality; wherein the solder for each layer has a predetermined melting point.
Abstract:
Techniques for electronic device fabrication are provided. In one aspect, an electronic device is provided. The electronic device comprises at least one interposer structure having one or more vias and a plurality of decoupling capacitors integrated therein, the at least one interposer structure being configured to allow for one or more of the plurality of decoupling capacitors to be selectively deactivated. In another aspect, a method of fabricating an electronic device comprising at least one interposer structure having one or more vias and a plurality of decoupling capacitors integrated therein comprises the following step. One or more of the plurality of decoupling capacitors are selectively deactivated.
Abstract:
A physically secure processing assembly is provided that includes dies mounted on a substrate so as to sandwich the electrical contacts of the dies between the dies and the substrate. The substrate is provided with substrate contacts and conductive pathways that are electrically coupled to the die contacts and extend through the substrate. Electrical conductors surround the conductive pathways. A monitoring circuit detects a break in continuity of one or more of the electrical conductors, and preferably renders the assembly inoperable. Preferably, an epoxy encapsulation is provided to prevent probing tools from being able to reach the die or substrate contacts.
Abstract:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
Abstract:
A method for the removal of residual UV radiation-sensitive adhesive from the surfaces of semiconductor wafers, remaining thereon from protective UV radiation-sensitive tapes which were stripped from the semiconductor wafers. Moreover, provided is an arrangement for implementing the removal of residual sensitive adhesive, which remain from tapes employed as protective layers on semiconductor wafers, particularly wafers having surfaces including C4 connections.
Abstract:
A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.
Abstract:
A low impedance power distribution structure and method for substrate packaging of semiconductor chips containing very large scale integrated circuit (VLSI) circuits, such as microprocessors and associated memory, is presented. The power distribution structure incorporates under bump metallurgy (UBM) solder bump forming technology to produce not only solder bump connections that are vertically oriented, but also low impedance distribution wires that are horizontally oriented, and which provide electrical interconnection between various selected electrical contact points, such as solder bumps. These low impedance distribution wires introduce the benefits of low characteristic impedance to the substrate's power distribution structure.
Abstract:
An apparatus used for holding a first semiconductor device in proper alignment to a second semiconductor device, whose size is different from the first device, while performing a C4 bond between the two devices. The apparatus for holding the two devices in proper alignment consists of a holding fixture, which includes upper and lower pocket receptacles for receiving the semiconductor devices. The semiconductor devices are placed into the respective upper and lower slots aligned to two or more edges of the holding fixture.