摘要:
The present invention uses wire bonding technology to bond interconnect materials that oxidize easily by using a wire with stable oxidation qualities. A passivation layer is formed on the semiconductor substrate to encapsulate the bonding pad made from the interconnect material such that the wire bonds with the passivation layer itself, not with the interconnect material. The passivation layer is selected to be a material that is metallurgically stable when bonded to the interconnect material. Since the wire is stable compared with the interconnect material, i.e., it does not readily corrode, a reliable mechanical and electrical connection is provided between the semiconductor device (interconnect material) and the wire, with the passivation layer disposed therebetween.
摘要:
The present invention provides a method of forming a vertical replacement gate (VRG) device on a semiconductor substrate. The method includes depositing an epitaxial layer over a first source/drain region, implanting a layer within the epitaxial layer wherein the thickness of the layer substantially defines a channel length of the device and replacing the layer with a gate layer.
摘要:
The present invention provides a method of forming a trench capacitor in an input/output region and a trench isolation structure in an active device region and a method of manufacturing an integrated circuit using the aforementioned method of forming. The invention comprises concurrently forming an isolation trench in an active region and a capacitive trench in an input/output region, concurrently forming a dielectric layer over the walls of the isolation trench and the capacitive trench, and forming a conductive material in the capacitive trench.
摘要:
A method for forming shallow trench isolation structures produces a shallow trench isolation structure having a substantially planar upper surface. The shallow trench isolation structure is formed from an originally formed shallow trench isolation structure which includes a deposited dielectric material within a trench and which exhibits dishing related problems in the form of a void formed within the trench, wherein the surface of the deposited dielectric material is recessed below the planar upper surface. The method provides for filling the void with a silicon film. The silicon film is then polished in its as-deposited or oxidized form, to produce a shallow trench isolation structure having a planar upper surface.
摘要:
The specification describes techniques for wire bonding gold wires to copper metallization in semiconductor integrated circuits. A barrier layer is formed on the copper, and an aluminum bonding pad is formed on the barrier layer. Gold wire is then thermocompression bonded to the aluminum pad.
摘要:
A process for forming isolated active device regions on a silicon substrate comprises the steps of forming at least one trench in a silicon substrate to define at least two active device regions on the substrate to be isolated from each other, depositing an electrically insulative material on the substrate to fill the trench with the material, planarizing the surface of the substrate, performing a masking and etching operation to expose at least one active device region on the substrate, selectively growing a first epitaxial layer of silicon on the exposed active device region, masking the substrate to leave exposed at least one other active device region on the substrate, selectively growing a second epitaxial layer of silicon on the other exposed active device region, the first epitaxial layer and second epitaxial layer being doped with dopant atoms to the same or different dopant concentration to provide, at least two isolated active device regions on the silicon substrate. The process of the invention enables the fabrication of performance optimized MOS-type and bipolar devices simultaneously and independently of each other on a single clip or wafer.
摘要:
A trench capacitor formed on an SOI substrate extends through an upper silicon layer and an insulating layer and into a semiconductor base substrate. The outer electrode of the trench capacitor includes portions of the semiconductor base substrate which bound the trench in which the trench capacitor is formed. The outer electrode is coupled to a contact structure formed in close proximity to the trench capacitor, and which extends through the insulating layer. The method for simultaneously producing the trench capacitor and contact structure includes forming two trench openings, forming a dielectric liner on one of the trench openings, then filling each of the trench openings with a semiconductor material.
摘要:
A process for fabricating novel dual-polysilicon structures comprises forming trenches of differing depths in a field oxide that overlies a substrate. The trenches are formed using a stop layer so that the depth of the trenches may be precisely controlled. Utilizing an ion implantation barrier in the trenches, ion implantation is performed to create self-aligned structures. Importantly, polysilicon is formed in the trenches in a single deposition.
摘要:
A method for forming a shallow trench isolation structure within a semiconductor substrate includes forming a trench opening within a semiconductor substrate having an oxidation-resistant material as a top surface. An oxide liner is formed on inner surfaces of the trench opening. A silicon material is then introduced into the trench opening and over the top surface. The silicon material is subsequently oxidized, either before or after a polishing operation is used to planarize the structure. Dishing related problems are avoided during polishing because the silicon or oxidized silicon material has a polishing rate similar to the oxidation resistant material, and less than that of conventionally formed CVD oxides.
摘要:
The present invention provides a bond pad support structure for use in an integrated circuit having a bond pad located thereon. In one embodiment, the bond pad support structure comprises a support layer that is located below the bond pad and that has an opening formed therein. The bond pad support structure further includes a dielectric layer that is located on the conductive layer and that extends at least partially into the opening to form a bond pad support surface over at least a portion of the opening. The first bond pad support layer, in one embodiment, may comprise a conductive metal and the second bond pad support layer may comprise of a dielectric material. The present invention provides a unique bond pad structure wherein an opening within a first bond pad support layer is at least partially filled with a second bond pad support layer. It is believed that the inter-structural cooperation between these two layers provides a graded composite support structure that acts as a differential force transducer to buffer internal and bonding stresses within an integrated circuit.