摘要:
A method includes molding a polymer onto a package component. The step of molding includes a first molding stage performed at a first temperature, and a second molding stage performed at a second temperature different from the first temperature.
摘要:
Methods of packaging semiconductor devices and structures thereof are disclosed. In one embodiment, a method of packaging a semiconductor device includes providing a carrier wafer, providing a plurality of dies, and forming a die cave material over the carrier wafer. A plurality of die caves is formed in the die cave material. At least one of the plurality of dies is placed within each of the plurality of die caves in the die cave material. A plurality of packages is formed, each of the plurality of packages being formed over a respective at least one of the plurality of dies.
摘要:
A wafer level package includes a semiconductor die bonded on a supporting wafer. The semiconductor die has at least a step recess at its substrate. An underfill layer is formed between the semiconductor die and the supporting wafer. Moreover, the height of the underfill layer is limited by the step recess. During a fabrication process of the wafer level package, the step recess helps to reduce the stress on the wafer level package.
摘要:
The embodiments of mechanisms of wafer-level packaging (WLP) described above utilize a planarization stop layer to determine an end-point of the removal of excess molding compound prior to formation of redistribution lines (RDLs). Such mechanisms of WLP are used to implement fan-out and multi-chip packaging. The mechanisms are also usable to manufacture a package including chips (or dies) with different types of external connections. For example, a die with pre-formed bumps can be packaged with a die without pre-formed bumps.
摘要:
The mechanisms of forming a semiconductor device package described above provide a low-cost manufacturing process due to the relative simple process flow. By forming an interconnecting structure with a redistribution layer(s) to enable bonding of one or more dies underneath a package structure, the warpage of the overall package is greatly reduced. In addition, interconnecting structure is formed without using a molding compound, which reduces particle contamination. The reduction of warpage and particle contamination improves yield. Further, the semiconductor device package formed has low form factor with one or more dies fit underneath a space between a package structure and an interconnecting structure.
摘要:
Methods of packaging semiconductor devices and structures thereof are disclosed. In one embodiment, a method of packaging a semiconductor device includes providing a carrier wafer, providing a plurality of dies, and forming a die cave material over the carrier wafer. A plurality of die caves is formed in the die cave material. At least one of the plurality of dies is placed within each of the plurality of die caves in the die cave material. A plurality of packages is formed, each of the plurality of packages being formed over a respective at least one of the plurality of dies.
摘要:
Methods of packaging semiconductor devices are disclosed. In one embodiment, a packaging method for semiconductor devices includes providing a workpiece including a plurality of first dies, and coupling a plurality of second dies to the plurality of first dies. The plurality of second dies and the plurality of first dies are partially packaged and separated. Top surfaces of the second dies are coupled to a carrier, and the partially packaged plurality of second dies and plurality of first dies are fully packaged. The carrier is removed, and the fully packaged plurality of second dies and plurality of first dies are separated.
摘要:
A method includes molding a polymer onto a package component. The step of molding includes a first molding stage performed at a first temperature, and a second molding stage performed at a second temperature different from the first temperature.
摘要:
A wafer level package includes a semiconductor die bonded on a supporting wafer. The semiconductor die has at least a step recess at its substrate. An underfill layer is formed between the semiconductor die and the supporting wafer. Moreover, the height of the underfill layer is limited by the step recess. During a fabrication process of the wafer level package, the step recess helps to reduce the stress on the wafer level package.
摘要:
The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.