Illuminating Display Systems
    61.
    发明申请
    Illuminating Display Systems 有权
    照明显示系统

    公开(公告)号:US20140225515A1

    公开(公告)日:2014-08-14

    申请号:US14255774

    申请日:2014-04-17

    Abstract: An exemplary system comprises a power regulator and an emitting apparatus. The emitting apparatus is typically attached to or integrated with a display object, such as a merchandise package or container. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a first primary inductor voltage. The emitting apparatus comprises an illumination source and a secondary inductor coupled to the illumination source. The illumination source is adapted to emit visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor. In exemplary embodiments, the first and second inductors are substantially planar.

    Abstract translation: 示例性系统包括功率调节器和发射设备。 发光装置通常附接到显示对象,例如商品包装或容器上或与显示对象集成。 支持结构,例如购买点显示,通常包含或支持一个或多个功率调节器和显示对象。 功率调节器包括控制器和初级电感器,并且控制器适于向初级电感器提供电压或电流以产生第一初级电感器电压。 发光装置包括照明源和耦合到照明源的次级电感器。 当功率调节器处于导通状态并且次级电感器在初级电感器的预定距离内时,照明源适于发射可见光。 在示例性实施例中,第一和第二电感器基本上是平面的。

    Method of and Printable Compositions for Manufacturing a Multilayer Carbon Nanotube Capacitor
    62.
    发明申请
    Method of and Printable Compositions for Manufacturing a Multilayer Carbon Nanotube Capacitor 有权
    制造多层碳纳米管电容器的方法和可印刷组合物

    公开(公告)号:US20140182099A1

    公开(公告)日:2014-07-03

    申请号:US14201059

    申请日:2014-03-07

    Abstract: Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.

    Abstract translation: 公开了多层碳纳米管电容器,以及用于制造多层碳纳米管(CNT)的方法和可印刷组合物。 第一电容器实施例包括:第一导体; 在离子液体中的多个固定的CNT,每个固定的CNT包含耦合到碳纳米管并进一步耦合到第一导体的磁性催化剂纳米颗粒; 以及在离子液体中分散和移动的第一多个游离CNT。 另一电容器实施例包括:第一导体; 耦合到第一导体的导电纳米片; 离子液体中的第一多个固定CNT并进一步与导电纳米颗粒结合; 以及在离子液体中分散和移动的多个游离CNT。 还公开了CNT和其他结构的各种印刷方法,以及使用施加的电场和磁场对准和移动CNT的方法。

    SELF-ALIGNMENT OF OPTICAL STRUCTURES TO RANDOM ARRAY OF PRINTED MICRO-LEDS

    公开(公告)号:US20190312180A1

    公开(公告)日:2019-10-10

    申请号:US16439141

    申请日:2019-06-12

    Abstract: Printed micro-LEDs have a top metal anode electrode that is relatively tall and narrow and a bottom cathode electrode. After the LED ink is cured, the bottom electrodes are in electrical contact with a conductive layer on a substrate. The locations of the LEDs are random. A thin dielectric layer is then printed between the LEDs, and a thin conductive layer, such as a nano-wire layer, is then printed over the dielectric layer to contact the anode electrodes. The top conductive layer over the tall anode electrodes has bumps corresponding with the locations of the LEDs. An omniphobic liquid is then printed which only resides in the “low” areas of the top conductive layer between the bumps. Any optical material is then uniformly printed over the resulting surface. The printed optical material accumulates only on the bump areas by adhesion and surface tension, so is self-aligned with the individual LEDs.

    Self-alignment of optical structures to random array of printed micro-LEDs

    公开(公告)号:US10355172B1

    公开(公告)日:2019-07-16

    申请号:US16003432

    申请日:2018-06-08

    Abstract: Printed micro-LEDs have a top metal anode electrode that is relatively tall and narrow and a bottom cathode electrode. After the LED ink is cured, the bottom electrodes are in electrical contact with a conductive layer on a substrate. The locations of the LEDs are random. A thin dielectric layer is then printed between the LEDs, and a thin conductive layer, such as a nano-wire layer, is then printed over the dielectric layer to contact the anode electrodes. The top conductive layer over the tall anode electrodes has bumps corresponding with the locations of the LEDs. An omniphobic liquid is then printed which only resides in the “low” areas of the top conductive layer between the bumps. Any optical material is then uniformly printed over the resulting surface. The printed optical material accumulates only on the bump areas by adhesion and surface tension, so is self-aligned with the individual LEDs.

Patent Agency Ranking