Abstract:
Various examples of a technique for forming a pattern for substrate fabrication are disclosed herein. In an example, a method includes receiving a substrate. A patterned resist is formed on the substrate and has a trench defined therein. A dielectric is deposited on the patterned resist and within the trench such that the dielectric narrows a width of the trench to further define the trench. A fabrication process is performed on a region of the substrate underlying the trench defined by the dielectric.
Abstract:
A FinFET including a substrate, a plurality of isolation structures, a plurality of blocking layers, and a gate stack is provided. The substrate has a plurality of semiconductor fins. The isolation structures are located on the substrate to isolate the semiconductor fins. In addition, the semiconductor fins protrude from the isolation structures. The blocking layers are located between the isolation structures and the semiconductor fins. The material of the blocking layers is different from the material of the isolation structures. The gate stack is disposed across portions of the semiconductor fins, portions of the blocking layers and portions of the isolation structures. In addition, a method for fabricating the FinFET is also provided.
Abstract:
A fin-type field effect transistor comprising a substrate, at least one gate structure, spacers and strained source and drain regions is described. The at least one gate structure is disposed over the substrate and on the isolation structures. The spacers are disposed on sidewalls of the at least one gate structure. First blocking material layers are disposed on the spacers. The strained source and drain regions are disposed at two opposite sides of the at least one gate structure. Second blocking material layers are disposed on the strained source and drain regions. The first and second blocking material layers comprise oxygen-rich oxide materials.
Abstract:
A semiconductor device includes a semiconductor fin, a first silicon nitride based layer, a lining oxide layer, a second silicon nitride based layer and a gate oxide layer. The semiconductor fin has a top surface, a first side surface adjacent to the top surface, and a second side surface which is disposed under and adjacent to the first side surface. The first silicon nitride based layer peripherally encloses the second side surface of the semiconductor fin. The lining oxide layer is disposed conformal to the first silicon nitride based layer. The second silicon nitride based layer is disposed conformal to the lining oxide layer. The gate oxide layer is disposed conformal to the top surface and the first side surface of the semiconductor fin.
Abstract:
A semiconductor device includes a semiconductor substrate and a trench isolation. The trench isolation is located in the semiconductor substrate, and includes an epitaxial layer and a dielectric material. The epitaxial layer is in a trench of the semiconductor and is peripherally enclosed thereby, in which the epitaxial layer is formed by performing etch and epitaxy processes. The etch and epitaxy process includes etching out a portion of a sidewall of the trench and a portion of a bottom surface of the trench and forming the epitaxial layer conformal to the remaining portion of the sidewall and the remaining portion of the bottom surface. The dielectric material is peripherally enclosed by the epitaxial layer.
Abstract:
The present disclosure relates to a transistor device. In some embodiments, the transistor device has an epitaxial layer disposed over a substrate. The epitaxial layer is arranged between a source region and a drain region separated along a first direction. Isolation structures are arranged on opposite sides of the epitaxial layer along a second direction, perpendicular to the first direction. A gate dielectric layer is disposed over the epitaxial layer, and a conductive gate electrode is disposed over the gate dielectric layer. The epitaxial layer overlying the substrate improves the surface roughness of the substrate, thereby improving transistor device performance.
Abstract:
A method of forming a gate includes: forming a dummy gate; forming an inter layer dielectric (ILD) laterally adjacent to the dummy gate; doping a dopant into the dummy gate and the ILD, in which a surface dopant concentration of the dummy gate is lower than a surface dopant concentration of the ILD; removing the dummy gate to form a cavity after doping the dopant into the dummy gate and the ILD; and forming the gate in the cavity.
Abstract:
Techniques in fabricating a fin field-effect transistor (FinFET) include providing a substrate having a fin structure and forming an isolation region having a top surface with a first surface profile. A dopant species is implanted using a tilt angle to edge portions of the top surface. The edge portions are then removed using an etch process. In this respect, the isolation region is modified to have a second surface profile based on an etching rate that is greater than an etching rate used at other portions of the top surface. The second surface profile has a step height that is smaller than a step height corresponding to the first surface profile. The tilt implantation and etching process can be performed before a gate structure is formed, after the gate structure is formed but before the fin structure is recessed, or after the fin structure is recessed.
Abstract:
The present disclosure relates to an embedded flash memory cell having a common source oxide layer with a substantially flat top surface, disposed between a common source region and a common erase gate, and a method of formation. In some embodiments, the embedded flash memory cell has a semiconductor substrate with a common source region separated from a first drain region by a first channel region and separated from a second drain region by a second channel region. A high-quality common source oxide layer is formed by an in-situ steam generation (ISSG) process at a location overlying the common source region. First and second floating gate are disposed over the first and second channel regions on opposing sides of a common erase gate having a substantially flat bottom surface abutting a substantially flat top surface of the common source oxide layer.
Abstract:
Some embodiments of the present disclosure relate to an optical sensor. The optical sensor includes a first electrode disposed over a semiconductor substrate. A photoelectrical conversion element, which includes a p-type layer and an n-type layer, is arranged over the first electrode to convert one or more photons having wavelength falling within a predetermined wavelength range into an electrical signal. A second electrode is disposed over the photoelectrical conversion element. The second electrode is transparent in the predetermined wavelength range. A color filter element, which is made up of plasmonic nanostructures, is disposed over the second electrode.