Abstract:
Method and apparatus for joining together edge surfaces of polytetrafluoroethylene material by a butt joint in which clamps along the abutting surfaces press together the abutting surfaces, heating means spaced from and out of direct contact with a strip between the clamps heats the strip by radiation or convection, and a cooling arrangement is provided via the clamps to remove heat from the clamping zone. A thin foil of a fluorine-containing thermoplastic inserted between the abutting surfaces facilitates joining of the surfaces.
Abstract:
A method for sealing at least two multilayer polymeric films each being built up of two or more alternating layers of different thermoplastic component polymers, e.g., polyethylene and polyamide, which includes the steps of applying pressure to at least two of the multilayer films arranged to be sealed together in a sealing area, simultaneously heating the films in the area to a first temperature which is at least equal to the softening point of the polyethylene component, but lower than the softening point of the polyamide component, e.g., about 140* C., and then heating the films in the sealing area to a second temperature which is at least equal to the softening point of the polyamide component, e.g., about 220* C., whereby the layers of the polyamide are fused together to provide a seal between the films. An apparatus for carrying out this method is also disclosed.
Abstract:
A method of producing flexible polypropylene fabric bags with heat fused seams comprising providing fabric pieces, wherein each fabric piece has a coated side and an uncoated side; positioning fabric pieces so that a coated side of one fabric piece faces a coated side of another fabric piece; selecting an area of fabric to be joined for forming a seam or joint; applying heat to the area to be joined that is less than the melting point of the fabrics, for forming one or more seams or joints and wherein the heat fused seams or joints of a resulting polypropylene bag retains at least 85% of the fabric strength without using sewing machines.
Abstract:
The present disclosure is concerned with a method of forming a seal with a polyethylene based film structure. The polyethylene based film structure has at least one layer formed with an oriented polyethylene having a predetermined melting temperature (Tm). A conductive heat sealing device provides heat to form the seal, where a first sealing bar of the conductive heat sealing device operates at a first operating temperature of at least 10 degrees Celsius (° C.) below the Tm of the oriented polyethylene in the polyethylene based film structure and a second sealing bar of the conductive heat sealing device operates at a second operating temperature of at least 15° C. higher than the operating temperature of the first sealing bar. The seal formed with the polyethylene based film structure retains at least 99 percent of its original surface area prior to forming the seal.
Abstract:
There is provided a method for producing a metal-resin composite including a metal member and a resin member which are joined together, the resin member containing at least a thermoplastic resin. The method includes a step of joining together the resin member and the metal member by melting the resin member with the frictional heat generated in the surface of the metal member on its side opposite to the resin member in a state where the metal member and the resin member are superposed. The melting point of the thermoplastic resin is 260° C. or more.
Abstract:
A method of making an aircraft blade is provided. The method comprises the steps of: assembling two or more fibre-reinforced thermoplastic composite parts into a blade assembly; and welding the fibre-reinforced thermoplastic composite parts together utilising an additional thermoplastic located at least at locations where the parts will abut when assembled. The additional thermoplastic has a melting or softening temperature lower than a melting temperature of each of the fibre-reinforced thermoplastic composite parts being assembled. The step of welding comprises heating the blade assembly to a temperature above the melting/softening temperature of the additional thermoplastic and below the melting temperature of each of the fibre-reinforced thermoplastic composite parts so as to melt/soften the additional thermoplastic and thereby weld the fibre-reinforced thermoplastic composite parts together to form the aircraft blade.
Abstract:
A flat strip 1, suitable for forming a tube flexible skirt, comprising a decorative film 15 superimposed on a primary film 16, said primary film 16 consisting of a series of polymeric layers and comprising a sealable inner layer 14 at the lower surface 20 of the strip 1, said decorative film 15 comprising a sealable outer layer 7 at the upper surface 19 of the strip 1 and a decorative layer 8, 9. The primary film 16 comprises means for stabilizing the strip 1 and protecting the decorative layer 8,9 against heating.