Abstract:
In one embodiment, a sensor includes a rigid wafer outer body, a first cavity located within the rigid wafer outer body, a first spring supported by the rigid wafer outer body and extending into the first cavity, a second spring supported by the rigid wafer outer body and extending into the first cavity, and a first sensor structure supported by the first spring and the second spring within the first cavity.
Abstract:
A method of forming a semiconductor device includes bonding a capping wafer and a base wafer to form a wafer package. The base wafer includes a first chip package portion, a second chip package portion, and a third chip package portion. The capping wafer includes a plurality of isolation trenches. Each isolation trench of the plurality of isolation trenches is substantially aligned with a corresponding trench region of one of the first chip package portion, the second chip package portion or the third chip package portion. The method also includes removing a portion of the capping wafer to expose a first chip package portion contact, a second chip package portion contact, and a third chip package portion contact. The method further includes separating the wafer package into a first chip package configured to perform a first operation, a second chip package configured to perform a second operation, and a third chip package configured to perform a third operation.
Abstract:
A device includes vertically and laterally spaced sensors that sense different physical stimuli. Fabrication of the device entails forming a device structure having a first and second wafer layers with a signal routing layer interposed between them. Active transducer elements of one or more sensors are formed in the first wafer layer and a third wafer layer is attached with the second wafer layer to produce one or more cavities in which the active transducer elements are located. A trench extends through the second wafer and through a portion of the signal routing layer. The trench electrically isolates a region of the second wafer layer surrounded by the trench from a remainder of the second wafer layer. Another active transducer element of another sensor is formed in this region. The transducer element formed in the second wafer layer may be a diaphragm for a pressure sensor of the sensor device.
Abstract:
This document discusses, among other things, an inertial measurement system including a device layer including a single proof-mass 3-axis accelerometer, a cap wafer bonded to a first surface of the device layer, and a via wafer bonded to a second surface of the device layer, wherein the cap wafer and the via wafer are configured to encapsulate the single proof-mass 3-axis accelerometer. The single proof-mass 3-axis accelerometer can be suspended about a single, central anchor, and can include separate x, y, and z-axis flexure bearings, wherein the x and y-axis flexure bearings are symmetrical about the single, central anchor and the z-axis flexure is not symmetrical about the single, central anchor.
Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
Abstract:
A functional element includes a first electrode section, a second electrode section, a first wiring line connected to the first electrode section, and a second wiring line connected to the second electrode section, the first wiring line is provided with at least one first intersecting section intersecting with a wiring line other than the second wiring line, the second wiring line includes at least one second intersecting section intersecting with a wiring line other than the first wiring line, and a difference between a number of the first intersecting sections and a number of the second intersecting sections satisfies a condition one of equal to and lower than 50% with respect to larger one of the number of the first intersecting sections and the number of the second intersecting sections.
Abstract:
This document discusses, among other things, a cap wafer and a via wafer configured to encapsulate a single proof-mass 3-axis gyroscope formed in an x-y plane of a device layer. The single proof-mass 3-axis gyroscope can include a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope sensor, a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.
Abstract:
A microelectromechanical sensor that in one embodiment includes a supporting structure, having a substrate and electrode structures anchored to the substrate; and a sensing mass, movable with respect to the supporting structure so that a distance between the sensing mass and the substrate is variable. The sensing mass is provided with movable electrodes capacitively coupled to the electrode structures. Each electrode structure comprises a first fixed electrode and a second fixed electrode mutually insulated by a dielectric region and arranged in succession in a direction substantially perpendicular to a face of the substrate.
Abstract:
A method for manufacturing a MEMS device includes the following operations. An SOI wafer including a device layer, an insulating layer and a handle layer is provided. The device layer is etched to form a recess and an annular protrusion surrounding the recess. A moving part and a spring of the MEMS device are formed on the recess by etching the device layer, the insulating layer and the handle layer. An anchor of the MEMS device is formed at the annular protrusion by etching the device layer, the insulating layer and the handle layer. The moving part and the anchor are connected to each other by the spring. The insulating layer is disposed between a first conductive portion and a second conductive portion of the moving part. The insulating layer is disposed between a first conductive portion and a second conductive portion of the anchor.
Abstract:
According to an aspect of the invention, a functional element includes a substrate which is provided with a concave section; a stationary section connected to a wall section that defines the concave section of the substrate; an elastic section which extends from the stationary section and is capable of stretching and contracting in a first axis direction; a movable body connected to the elastic section; a movable electrode section which extends from the movable body. The concave section includes a cutout section which is provided on the wall section. The stationary section includes an overlap section which is spaced with the substrate, and overlaps the concave section when seen in a plan view. At least a portion of the overlap section overlaps the cutout section when seen in the plan view, and the elastic section extends from the overlap section.