Abstract:
An integrated circuit includes a transistor, an UTBOX buried insulating layer disposed under it and a ground plane disposed under the layer. A well is disposed under the plane and a first trench is at the periphery of the transistor and extends through the layer into the well. There is a substrate under the well and a p-n diode on a side of the transistor. The diode comprises first and second zones of opposite doping and the first zone is configured for electrical connection to a first electrode of the transistor. The first and second zones are coplanar with the plane and a second trench for separating the first and second zones. The second trench extends through the layer into the plane to a depth less than an interface between the plane and the well. There is a third zone under the second trench forming a junction between the zones.
Abstract:
A method for manufacturing a wafer on which are formed resonators, each resonator including, above a semiconductor substrate, a stack of layers including, in the following order from the substrate surface: a Bragg mirror; a compensation layer made of a material having a temperature coefficient of the acoustic velocity of a sign opposite to that of all the other stack layers; and a piezoelectric resonator, the method including the successive steps of: a) depositing the compensation layer; and b) decreasing thickness inequalities of the compensation layer due to the deposition method, so that this layer has a same thickness to within better than 2%, and preferably to within better than 1%, at the level of each resonator.
Abstract:
An electronic device includes a transimpedance amplifier stage having an amplifier end stage of the class AB type and a preamplifier stage coupled between an output of a frequency transposition stage and an input of the amplifier end stage. A self-biased common-mode control stage is configured to bias the preamplifier stage. The preamplifier stage is formed by a differential amplifier with an active load that is biased in response to the self-biased common-mode control stage.
Abstract:
An integrated circuit chip cooling device includes a network of micropipes. A first pipe portion and a second pipe portion of the network are connected by at least one valve. The valve is formed of a bilayer strip. In response to change in temperature, the shape of the bilayer strip changes to move the valve from a substantially closed position to an open position. In one configuration, the change is irreversible. In another configuration, the change is reversible in response to an opposite change in temperature.
Abstract:
A device can be used for compensating bandwidth mismatches of time interleaved analog to digital converters. A processor of the device determines, for each original sample stream, an estimated difference between the time constant of a low pass filter representative of the corresponding converter and a reference time constant of a reference low pass filter, and uses this estimated difference and a filtered stream to correct the original stream and deliver a corrected stream of corrected samples.
Abstract:
A reference voltage generation circuit, including a first current source in series with a first bipolar transistor; a second current source in series with a first resistor; a third current source in series with a second bipolar transistor, the third current source being assembled as a current mirror with the first current source; a second resistor between the base of the second bipolar transistor and the junction point between the current source and the first resistor; and a fourth current source in series with a third resistor, the junction point between the fourth current source and the third resistor defining a reference voltage terminal.
Abstract:
A power management circuit including, between a first terminal intended to be connected to an electric power generation source and a second terminal intended to be connected to a load to be powered, a linear regulator and a circuit capable of activating the linear regulator when the power supplied by said source is greater than a first threshold.
Abstract:
An overvoltage protection component may be in a SOI layer, a portion of the SOI layer forming the core of an optical waveguide. This component may be made of semiconductor regions of different doping types and/or levels, at least one of these regions corresponding to at least a portion of the waveguide core.
Abstract:
An integrated structure includes a support supporting at least one chip and a heat dissipating housing, attached to the chip. The housing is thermally conductive and has a thermal expansion compatible with the chip. The housing may further including closed cavities filled with a phase change material.
Abstract:
A photodetector including a photoelectric conversion structure made of a semiconductor material and, on a light-receiving surface of the conversion structure, a stack of first and second diffractive elements, the second element being above the first element, wherein: the first element includes at least one pad made of a material having an optical index n1, laterally surrounded with a region made of a material having an optical index n2 different from n1; the second element includes at least one pad made of a material having an optical index n3, laterally surrounded with a region made of a material having an optical index n4 different from n3; the pads of the first and second elements are substantially vertically aligned; and optical index differences n1−n2 and n3−n4 have opposite signs.