摘要:
The present invention generally relates to nanoscale wire devices and methods for use in determining analytes suspected to be present in a sample. The invention provides a nanoscale wire that has improved sensitivity, as the carrier concentration in the wire is controlled by an external gate voltage, such that the nanoscale wire has a Debye screening length that is greater than the average cross-sectional dimension of the nanoscale wire when the nanoscale wire is exposed to a solution suspected of containing an analyte. This Debye screening length (lambda) associated with the carrier concentration (p) inside nanoscale wire is adjusted by adjusting the gate voltage applied to an FET structure, such that the carriers in the nanoscale wire are depleted.
摘要:
The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.
摘要:
An architecture for nanoscale electronics is disclosed. The architecture comprises arrays of crossed nanoscale wires having selectively programmable crosspoints. Nanoscale wires of one array are shared by other arrays, thus providing signal propagation between the arrays. Nanoscale signal restoration elements are also provided, allowing an output of a first array to be used as an input to a second array. Signal restoration occurs without routing of the signal to non-nanoscale wires.
摘要:
A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor.
摘要:
The present invention generally relates to nanoscale heterostructures and, in some cases, to nanowire heterostructures exhibiting ballistic transport, and/or to metal-semiconductor junctions that that exhibit no or reduced Schottky barriers. One aspect of the invention provides a solid nanowire having a core and a shell, both of which are essentially undoped. For example, in one embodiment, the core may consist essentially of undoped germanium and the shell may consist essentially of undoped silicon. Carriers are injected into the nanowire, which can be ballistically transported through the nanowire. In other embodiments, however, the invention is not limited to solid nanowires, and other configurations, involving other nanoscale wires, are also contemplated within the scope of the present invention. Yet another aspect of the invention provides a junction between a metal and a nanoscale wire that exhibit no or reduced Schottky barriers. As a non-limiting example, a nanoscale wire having a core and a shell may be in physical contact with a metal electrode, such that the Schottky barrier to the core is reduced or eliminated. Still other aspects of the invention are directed to electronic devices exhibiting such properties, and techniques for methods of making or using such devices.
摘要:
Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
摘要:
Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
摘要:
An apparatus and methods for a sublithographic programmable logic array (PLA) are disclosed. The apparatus allows combination of non-restoring, programmable junctions and fixed (non-programmable) restoration logic to implement any logic function or any finite-state machine. The methods disclosed teach how to integrate fixed, restoration logic at sublithographic scales along with programmable junctions. The methods further teach how to integrate addressing from the microscale so that the nanoscale crosspoint junctions can be programmed after fabrication.
摘要:
A memory array comprising nanoscale wires is disclosed. The nanoscale wires are addressed by means of controllable regions axially and/or radially distributed along the nanoscale wires. In a one-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires and microscale wires. In a two-dimensional embodiment, memory locations are defined by crossing points between perpendicular nanoscale wires. In a three-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires located in different vertical layers.
摘要:
A nanoscale carbide article consisting essentially of covalently bounded elements M1, M2, and C having the molar ratio M1:M2:C::1:y:x, wherein the article has an aspect ratio of between 10 and 1000 and has a shorter axis of between 1 and 40 nanometers.