Field effect transistors with reduced parasitic resistances and method

    公开(公告)号:US10062692B1

    公开(公告)日:2018-08-28

    申请号:US15443381

    申请日:2017-02-27

    Abstract: Disclosed are methods of forming field effect transistor(s) (FET) and the resulting structures. Instead of forming the FET source/drain (S/D) regions during front end of the line (FEOL) processing, they are formed during middle of the line (MOL) processing through metal plug openings in an interlayer dielectric (ILD) layer. Processes used to form the S/D regions through the metal plug openings include S/D trench formation, epitaxial semiconductor material deposition, S/D dopant implantation and S/D dopant activation, followed by silicide and metal plug formation. Since the post-MOL processing thermal budget is low, the methods ensure reduced S/D dopant deactivation, reduced S/D strain reduction, and reduced S/D dopant diffusion and, thus, enable reduced S/D resistance, optimal strain engineering, and flexible junction control, respectively. Since the S/D regions are formed through the metal plug openings, the methods eliminate overlay errors that can lead to uncontacted or partially contacted S/D regions.

    Fabrication of multi threshold-voltage devices

    公开(公告)号:US10020202B2

    公开(公告)日:2018-07-10

    申请号:US15099641

    申请日:2016-04-15

    Abstract: A method of fabricating multi Vth devices and the resulting device are disclosed. Embodiments include forming a high-k dielectric layer over a substrate; forming a first TiN layer, a first barrier layer, a second TiN layer, a second barrier layer, and a third TiN layer consecutively over the high-k dielectric layer; forming a first masking layer over the third TiN layer in a first region; removing the third TiN layer in second and third regions, exposing the second barrier layer in the second and third regions; removing the first masking layer; removing the exposed second barrier layer; forming a second masking layer over the third TiN layer in the first region and the second TiN layer in the second region; removing the second TiN layer in the third region, exposing the first barrier layer in the third region; removing the second masking layer; and removing the exposed first barrier layer.

    Silicon liner for STI CMP stop in FinFET

    公开(公告)号:US09984933B1

    公开(公告)日:2018-05-29

    申请号:US15723416

    申请日:2017-10-03

    Abstract: A hardmask is patterned on a first material to leave hardmask elements. The first material is patterned into fins through the hardmask. A layer of silicon is formed on the hardmask elements and the fins in processing that forms the layer of silicon thicker on the hardmask elements relative to the fins. An isolation material is formed on the layer of silicon to leave the isolation material filling spaces between the fins. The isolation material and the layer of silicon are annealed to consume relatively thinner portions of the layer of silicon and leave the layer of silicon on the hardmask elements as silicon elements. A chemical mechanical polishing (CMP) is performed on the isolation material to make the isolation material planar with the silicon elements. A first etching agent removes the silicon elements on the hardmask elements, and a second chemical agent removes the hardmask elements.

    Devices and methods of forming SADP on SRAM and SAQP on logic

    公开(公告)号:US09761452B1

    公开(公告)日:2017-09-12

    申请号:US15205528

    申请日:2016-07-08

    CPC classification number: H01L27/1116 H01L21/3086 H01L27/1104 H01L28/00

    Abstract: Devices and methods of fabricating integrated circuit devices with reduced cell height are provided. One method includes, for instance: obtaining an intermediate semiconductor device having a substrate including a logic area and an SRAM area, a fin material layer, and a hardmask layer; depositing a mandrel over the logic area; depositing a sacrificial spacer layer; etching the sacrificial spacer layer to define a sacrificial set of vertical spacers; etching the hardmask layer; leaving a set of vertical hardmask spacers; depositing a first spacer layer; etching the first spacer layer to define a first set of vertical spacers over the logic area; depositing an SOH layer; etching an opening in the SOH layer over the SRAM area; depositing a second spacer layer; and etching the second spacer layer to define a second set of spacers over the SRAM area.

Patent Agency Ranking