Abstract:
Thin, smooth silicon-containing films are prepared by deposition methods that utilize a silicon containing precursor. In preferred embodiments, the methods result in Si-containing films that are continuous and have a thickness of about 150 Å or less, a surface roughness of about 5 Å rms or less, and a thickness non-uniformity of about 20% or less. Preferred silicon-containing films display a high degree of compositional uniformity when doped or alloyed with other elements. Preferred deposition methods provide improved manufacturing efficiency and can be used to make various useful structures such as wetting layers, HSG silicon, quantum dots, dielectric layers, anti-reflective coatings (ARC's), gate electrodes and diffusion sources.
Abstract:
A liquid injector is used to vaporize and inject a silicon precursor into a process chamber to form silicon-containing layers during a semiconductor fabrication process. The injector is connected to a source of silicon precursor, which preferably comprises liquid trisilane in a mixture with one or more dopant precursors. The mixture is metered as a liquid and delivered to the injector, where it is then vaporized and injected into the process chamber.
Abstract:
Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches and contact vias are formed in insulating layers. The trenches and vias are exposed to alternating chemistries to form monolayers of a desired lining material. Exemplary process flows include alternately pulsed metal halide and ammonia gases injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal for any given trench and via dimensions.
Abstract:
A method is proposed for improving the adhesion between a diffusion barrier film and a metal film. Both the diffusion barrier film and the metal film can be deposited in either sequence onto a semiconductor substrate. A substrate comprising a first film, which is one of a diffusion barrier film or a metal film, with the first film being exposed at least at part of the surface area of the substrate, is exposed to an oxygen-containing reactant to create a surface termination of about one monolayer of oxygen-containing groups or oxygen atoms on the exposed parts of the first film. Then the second film, which is the other one of a diffusion barrier film and a metal film, is deposited onto the substrate. Furthermore, an oxygen bridge structure is proposed, the structure comprising a diffusion barrier film and a metal film having an interface with the diffusion barrier film, wherein the interface comprises a monolayer of oxygen atoms.
Abstract:
A dielectric film is formed by atomic layer deposition to conformally fill a narrow, deep trench for device isolation. The method of the illustrated embodiments includes alternately pulsing vapor-phase reactants in a string of cycles, where each cycle deposits no more than about a monolayer of material, capable of completely filling high aspect ratio trenches. Additionally, the trench-fill material composition can be tailored by processes described herein, particularly to match the coefficient of thermal expansion (CTE) to that of the surrounding substrate within which the trench is formed. Mixed phases of mullite and silica have been found to meet the goals of device isolation and matched CTE. The described process includes mixing atomic layer deposition cycles of aluminum oxide and silicon oxide in ratios selected to achieve the desired composition of the isolation material, namely on the order of 30% alumina and 70% silicon oxide by weight.
Abstract:
Methods for depositing epitaxial films such as epitaxial Ge and SiGe films. During cooling from high temperature processing to lower deposition temperatures for Ge-containing layers, Si or Ge compounds are provided to the substrate. Smooth, thin, relatively defect-free Ge or SiGe layers result. Retrograded relaxed SiGe is also provided between a relaxed, high Ge-content seed layer and an overlying strained layer.
Abstract:
A liquid injector is used to vaporize and inject a silicon precursor into a process chamber to form silicon-containing layers during a semiconductor fabrication process. The injector is connected to a source of silicon precursor, which preferably comprises liquid trisilane in a mixture with one or more dopant precursors. The mixture is metered as a liquid and delivered to the injector, where it is then vaporized and injected into the process chamber.
Abstract:
A substrate to be processed in a high temperature processing chamber is preheated to avoid the problems associated with thermal shock when the substrate is dropped onto a heated susceptor. Preheating is effected by holding the substrate over a susceptor maintained at or near the processing temperature until the temperature of the substrate approaches the processing temperature. Thus, wafer warping and breakage are greatly reduced, and wafer throughput is improved because of time saved in maintaining the susceptor at constant temperature without cool down and reheat periods.
Abstract:
Methods are provided for forming uniformly thin layers in magnetic devices. Atomic layer deposition (ALD) can produce layers that are uniformly thick on an atomic scale. Magnetic tunnel junction dielectrics, for example, can be provided with perfect uniformity in thickness of 4 monolayers or less. Furthermore, conductive layers, including magnetic and non-magnetic layers, can be provided by ALD without spiking and other non-uniformity problems. The disclosed methods include forming metal oxide layers by multiple cycles of ALD and subsequently reducing the oxides to metal. The oxides tend to maintain more stable interfaces during formation.
Abstract:
An improved apparatus and method for substrate layer deposition in which substrate layers are grown by carrier gas delivery of sequential pulses of reactants to the substrate surface. At least one of the reactants comprises excited species, e.g., radicals. In a specific embodiment, the apparatus of this invention provides sequential repeated pulses of reactants in a flow of carrier gas for reaction at a substrate surface. The reactant pulses are delivered with sufficient intervening delay times to minimize undesirable reaction between reactants in adjacent pulses in the gas phase or undesired uncontrolled reactions on the substrate surface.